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demonstrating the feasibility and robustness of the approach, while reaching competitive solutions.
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1. Introduction

In project management, the manager has to initiate, schedule,
execute, control, and close the project, this is a complex job for
the project manager. This is the reason why we need to optimize
these activities. The Software Project Scheduling Problem (SPSP)
is an specific Project Scheduling Problem (PSP) (Chen, 2011;
Laalaoui & Bouguila, 2014) which consists in making the appropri-
ate worker-task assignment that minimizes cost and duration for
the whole project, so the task precedence and resource constraints
are satisfied (Alba & Chicano, 2007; Chang, yi Jiang, Di, Zhu, & Ge,
2008; Nan & Harter, 2009). The PSP consists in organizing multiple
activities which can be assigned multiple resources, which can be
renewable or non-renewable, so that meet the defined objectives.
While in SPSP the main resource are the employees, who must to
be assigned to project tasks according to their skills. Another differ-
ence is that PSP may have different single objectives, while in SPSP
the main objective is to minimize the duration and cost of the
project.

The SPSP is a variation of another NP-hard problem called
Resource-Constrained Project Scheduling (RCPSP) is a very popular
problem in the literature (Brucker, Drexl, Mhring, Neumann, &
Pesch, 1999). RCPSP has many variations such as single-mode
RCPSP, multi-mode RCPSP, RCPSP with non-regular objective func-
tion, stochastic RCPSP among others (Fahmy, Hassan, & Bassioni,
2014; Hartmann & Briskorn, 2010; Tavana, Abtahi, & Khalili-
Damghani, 2014; Wu, Wan, Shukla, & Li, 2011). This has given rise
to multiple jobs, which derives the SPSP.

Alba proposes the original modeling of the SPSP and its
resolution by Genetic Algorithms (GA) (Alba & Chicano, 2007).
Chang proposes a Time-line based model for SPSP using Genetic
Algorithms (Chang et al., 2008). Later Xiao proposes a genetic algo-
rithm and Ant Colony System (ACS) to solve SPSP (Xiao, Ao, & Tang,
2013), and Crawford proposes a new resolution by using Max–Min
Ant Systems (MMAS) in Crawford, Soto, Johnson, and Monfroy
(2013a). Luna makes a scalability analysis of multi-objective
metaheuristics solving SPSP (Luna, González-Álvarez, Chicano, &
Vega-Rodríguez, 2014). Other articles have been written about
SPSP only as surveys.

SPSP is a problem where a set of employees must be assigned to
a set of tasks, so all tasks are completed by employees who have
the necessary skills to accomplish tasks. This assignment should
minimize the cost and duration of the whole project. The employ-
ees have remuneration and several skills and they can work on
multiple tasks during the workday. Most of the methods used for
solving the problem belong to the class of priority-rules based
methods or the class of metaheuristics.

ACO is a promising metaheuristic (Dorigo, Maniezzo, & Colorni,
1996), inspired from the behavior of real ant colonies. It is a prob-
abilistic approach for solving computational problems which can
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be reduced to finding good paths through graphs. This metaheuris-
tic can solve several NP-hard combinatorial problems effectively
(Christina & Miriam, 2012; Liao, Egbelu, Sarker, & Leu, 2011).

In this paper we present the model of SPSP, and the design of a
Max–Min Ant System algorithm (Dorigo & Stützle, 2004; Stützle &
Hoos, 2000) using the Hyper-Cube framework (HCF) (Blum &
Dorigo, 2004) to solve the Software Project Scheduling Problem.
MMAS is a specific ACO algorithm in which only the best ant is
used to update the pheromone information.

We introduce the ACO Hyper-Cube (ACO-HC) algorithm, to
solve the SPSP. This algorithm uses the HCF. HCF was originally
proposed by Blum and Dorigo (Blum & Dorigo, 2004). This frame-
work automatically handles the limits of pheromone values by
modification in the update pheromone rule. This modification
allows the algorithms to be more robust and easier to implement.
The HCF can be applied to different ACO algorithms (Johnson,
Crawford, & Palma, 2006).

We implement our proposed algorithm, and we conducted a
series of tests to analyze the convergence to obtain better solu-
tions. In addition we work in different tests to get the best param-
eterization. The tests were performed using different numbers of
tasks, employees, and skills. The results were compared with other
techniques such as Ant Colony System and Genetic Algorithms.

In this contribution we have built a solution for Software Project
Scheduling Problem adapting the Max–Min Ant System metaheu-
ristic and integrating it with the Hyper-Cube framework. That is,
we have integrated two techniques for building competitive and
robust solutions improving the solutions of other proposals.

This paper is organized as follows. In Section 2 we present a
detailed definition of SPSP, in Section 3 is presented a description
of ACO-HC. Section 4 presents the design of an ACO-HC for SPSP.
In a subsection we presents the construction graph, pheromone
update rules, the heuristic information, and the algorithm.
Section 5 presents the experimental results. The conclusions are
outlined in Section 6.
2. Description of the Software Project Scheduling Problem

The Software Project Scheduling Problem is one of the most
common problems in managing software engineering projects
(OZDAMAR & ULUSOY, 1995). It consists in finding a worker-task
schedule for a software project. SPSP should consider remunera-
tions and employee skills which must be assigned to project tasks
according to the requirements of these tasks (Alba & Chicano,
2007; Barreto, Barros, & Werner, 2008; Xiao et al., 2013). The most
important resources involved in SPSP are: the tasks, which are the
job needed to complete the project, the employees who work in
the task, and finally the skills. The employees have multiples skills,
and the tasks required a set of skills. It should make a careful allo-
cation according to the skills needed for the tasks and the skills of
employees.

2.1. Description of skills

As mentioned above, the skills are the abilities required for
completing the tasks, and the employees have all or some of these
abilities. These skills can be for example, design expertise, pro-
graming expert, leadership, GUI expert. The set of all skills associ-
ated with software project is defined as S ¼ fs1; . . . ; sjSjg, where jSj
is the number of skills.

2.2. Description of tasks

The tasks are all necessary activities for accomplishing the soft-
ware project. These activities are for example, analysis, component
design, programing, documentation, testing. The software project
is a sequence of tasks with different precedence among them. Gen-
erally, we can use a graph called task-precedence-graph (TPG) to
represent the precedence of these tasks. This is a non-cyclic direc-
ted graph denoted as GðV ; EÞ. The set of tasks is represented by
V ¼ ft1; t2; . . . ; tjTjg. The precedence relation of tasks is represented
by a set of edges E. An edge ðti; tjÞ 2 E, means ti is a direct predeces-
sor task tj. Consequently, the set of tasks necessary for the project
is defined as T ¼ ft1; . . . ; tjTjg, where jTj is the maximum number of
tasks. Each task have two attributes:

� tsk
j is a set of skills for the task j. It is a subset of S and corre-

sponds to all necessary skills to complete a task j.
� teff

j is a real number and represents the workload of the task j.

2.3. Description of employees

The most relevant resource in this problem is the employees.
The employees have multiple skills, commonly the employees
are software engineers, and their skills are software engineering
skills. The project has a set of employees and they work on the
tasks. The project manager needs to assign the employees to the
appropriate tasks. The problem is to create a worker-task schedule
where employees are assigned to suitable tasks. The set of employ-
ees is defined as EMP ¼ fe1; . . . ; ejEjg, where jEj is the number of
employees working on the project. Each employee has tree
attributes:

� esk
i is a set of skills of employee i. esk

i # S.
� emaxd

i is the maximum degree of work. it is the ratio between
hours for the project and the workday. emaxd

i 2 ½0;1�, if
emaxd

i ¼ 1 the employee has total dedication to the project, if
the employee has emax

i less than one, in this case is a part-time
job.
� erem

i is a real number. It is the monthly remuneration of
employee i.

2.4. Model description

The model for SPSP use tasks, employees, and skills previously
described. We describe the elements of the model in Table 1.

The SPSP solution can be represented as a matrix M ¼ ½E� T�.
The size jEj � jTj is the dimension of matrix determined by the
number of employees and the number of tasks. The elements of
the matrix mij 2 ½0;1�, corresponds to real numbers, which repre-
sent the degree of dedication of employee i to task j. If mij ¼ 0,
the employee i is not assigned to task j, that means the employee
does not dedicate time for this task. If mij ¼ 1, the employee i
works all day in the task j. For example, if mij ¼ 0:5, the employee
i uses 50 percent of his time on the project.

The solutions generated in this matrix not always are feasible.
That happens when all elements of a column i are 0, that means
the employees are not assigned to the task i. This solution is not
feasible because the task i is not finished. For this reason we define
some constraints to obtain a feasible solution from the matrix M;

� First, all tasks are assigned at least one employee as is presented
in Eq. (1).
XjEj
i¼1

mij > 0 8j 2 f1; . . . ; Tg ð1Þ
� Second, the employees assigned to the task j have all the neces-
sary skills to carry out the task. This is presented in Eq. (2) fol-
lows by the skills needed for the task tj are a subset of the union
of the skills the employees assigned to the task.



Table 1
SPSP Model.

Item Description

S ¼ fs1; . . . ; sjsjg Set of skills associated to software projects
T ¼ ft1; . . . ; tjTjg set of tasks necessary for the project
GðV ; EÞ The graph TGP represent the task precedence
V ¼ ft1; t2; . . . ; tjTjg Set of vertex consisted of all tasks
E ¼ fðti; tjÞ; . . . ; ðtn; tjTjÞg Edge set, the task ti must be done before tj

tsk
j

Set of skills for the task j. It is a subset of S

teff
j

Effort person-months to complete the task j

EMP ¼ fe1; . . . ; ejEjg Set of employees

esk
i

Set of skills of ei. It is a subset of S

emaxd
i

Maximum degree of dedication of ei; ei 2 0;1½ �
erem

i Monthly remuneration of ei

M ¼ ðmijÞ The employee i is assigned to task j, with mij

dedication
tinit

j
Initialization time for task j

tterm
j Termination time for task j

tcos
j Cost associated to task j

tlen
j

Required time to complete the task j

plen Required time to complete the whole project
pcos Total cost associated to project
eoverw

i Overtime work of employee ei

poverw Overtime work of the whole project

Fig. 2. Information of employees for the example in Fig. 1.
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tsk
j #

[
ijmij>0

esk
i 8j 2 f1; . . . ; Tg ð2Þ

We represent in Fig. 1 an example for the precedence tasks TPG
and their necessary skills tsk and effort teff . For the example pre-
sented in Fig. 1, we have a set of employees EMP ¼ e1; e2; e3f g,
and each one of these have a set of skills, maximum degree of ded-
ication, and remuneration, ilustrated in Fig. 2.

A solution consists in completing the matrix M, previously
described, such tasks are assigned to employees who have the nec-
essary skills. A solution for the previous problem is described in
Fig. 3.

First, it should be evaluated the feasibility of the solution, then
using the duration of all tasks and cost of the project, we appraise
the quality of the solution.

We compute the length time for each task as tlen
j ; j 2 1; . . . ; Tj jf g,

for this we use matrix M and teff
j according to the Eq. (3).

tlen
j ¼

teff
jPjEj

i¼1mij

ð3Þ
t1 

t2 

t3 

t1
sk={s1,s3} 

t1
eff= 10 

t2
sk={s1,s2}

t2
eff= 15 

t3
sk={s3} 

t3
eff= 20 

Fig. 1. Task precedence graph TGP with T
Now we can obtain the initialization time tinit
j and the termina-

tion time tterm
j for task j. To calculate these values, we use the pre-

cedence relationships, which is described as TPG GðV ; EÞ. We must
consider tasks without precedence, in this case the initialization
time tinit

j ¼ 0. To calculate the initialization time of tasks with
precedence firstly we must calculate the termination time for all
previous tasks. In this case tinit

j is defined in Eq. (4).

tinit
j ¼

0 if 8l – j; ðtl; tjÞ R E

max tterm
l j ðtl; tjÞ 2 E

� �
else

(
ð4Þ

tterm
j ¼ tinit

j þ tlen
j ð5Þ

Now we have the initialization time tinit
j , the termination time

tterm
j and the duration tlen

j for task j with j ¼ 1; . . . ; Tj jf g, that means
we have all elements to generate a Gantt chart. This equation rep-
resents a forward programing where there is no idle time. If there
should be included in the duration of the task to extend tterm

j . To
calculate the total length of the project plen, we only need termina-
tion time of last task, this is described in Eq. (6).

plen ¼ maxftterm
l k8l – jðtj; tlÞg ð6Þ

To calculate the cost of the whole project, we need firstly to
compute each cost associate to task as tcos

j with j 2 1; . . . ; Tj jf g using
Eq. (7), and then the total cost pcos is the sum of costs according to
the Eq. (8).

tcos
j ¼

XEj j

i¼1

erem
i mijtlen

j ð7Þ

pcos ¼
XTj j

j¼1

tcos
j ð8Þ

The target is minimize the total duration plen and the total cost
pcos. Therefore a fitness function is used, where wcos and wlen

represent the importance of pcos and plen. Then wcos and wlen are real
t4 

t6 

t4
sk={s1,s2}

t4
eff= 10 

t6
sk={s3} 

t6
eff= 20 

t5 

t5sk={s3}
t5

eff= 10 

¼ ft1; t2; t3; t4; t5; t6g; d ¼ fs1; s2; s3g.



M(ij) t1 t2 t3 t4 t5 t6 

e1 1.00 0.50 0.00 0.25 0.00 0.00 

e2 0.25 0.50 1.00 0.50 0.00 0.25 

e3 0.50 1.00 0.00 0.50 1.00 0.25 

Fig. 3. A possible solution for matrix M.
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numbers, this parameters allow us to meet the different
magnitudes. For this, wcos is initialized in (average cost)�1, and
wlen is initialized in (average length)�1. Then multiplying the
parameters by the corresponding pcos and plen the units are can-
celed and the values are in the same magnitude. Then, the fitness
function to minimize is given by Eq. (9).

f ðxÞ ¼ wcospcos þwlenplen
� �

ð9Þ

An element not considered is the overtime work that may
increase the cost and duration associated to a task, consequently
increasing pcos and plen to the software project. We define the over-
time work as ew

i . To calculate it, we use a function based on the
work load of employee at time t as is presented in Eq. (10).

ew
i ðtÞ ¼

X
tinit

j
6t6tterm

j

n omijðtÞ ð10Þ

If the employee ei has overtime work ew
i , which means the work

in instant t is larger than maximum degree of work, i.e.,
ew

i ðtÞ > emaxd
i . To calculate the overwork, we define the Eq. (11).

rampðxÞ ¼
x if x > 0
0 if x � 0

�
ð11Þ

Now we can calculate the overwork of an employee in the
whole project using the Eq. (12)

eoverw
i ¼

Xplen

t¼0

rampðew
i ðtÞ � emaxd

i Þ ð12Þ

To obtain the project overwork poverw, we must consider all
employees. To do this, we can use the Eq. (13).

poverw ¼
XEj j

i¼1

eoverw
i ð13Þ

With all variables required, we can determine if the solution is
feasible. In this case, is feasible when the solution can complete all
tasks, and there is no overwork, that means the poverw = 0.
Instance 
ACO-SPSP 
Association 

Employees-task 

Evaluation of 
solution Solution 

Fig. 4. Resolution structure for Scheduling Software Project.
3. The Hyper-Cube framework for ACO

The ACO algorithm exploits an optimization mechanism for
solving discrete optimization problems in various engineering
domains. ACO is a metaheuristic (Dorigo & Gambardella, 1997),
inspired from the behavior of real ant colonies. Furthermore it is
a probabilistic approach for solving computational problems which
can be reduced to finding good paths through graphs. The ants use
two resources to build solutions; the memoristic information
determined by the pheromone trails deposited by ants and the
heuristic information determined by an specific problem.

The Hyper-Cube was proposed by Blum and Dorigo (2004) and
Crawford et al. (2013a). This framework implements ACO algo-
rithms, that explicitly defines the multidimensional space for the
pheromone values as the convex hull of the set of 0–1 coded feasi-
ble solutions of the combinatorial optimization problem under
consideration.

The Hyper-Cube framework for ACO makes a modification in
the pheromone update rule, which is obtained via a normalization
of the original pheromone update equation. This allows a more
robust and autonomous handling of pheromone values to improve
the exploration of the solution space.

An advantage to implement this framework to Max–Min Ant
System (Stützle & Hoos, 2000), that is no need to reset smin and
smax values. These values are known (0 and 1, respectively).
Another advantage is when working with normalized values
becomes more explicit the relationship between the amounts of
pheromone deposited on a component and its use for the construc-
tion of solutions.
4. Max–Min Ant System for Schedule Software Project

The Max–Min Ant System is an Ant Colony Optimization algo-
rithm (Stützle & Hoos, 2000), which establishes a minimum and
maximum value for the pheromone, and provides that only the
best ant can update the pheromone trail. To adapt a Max–Min
Ant System to SPSP using a Hyper-Cube framework (Johnson
et al., 2006; Rubio, Crawford, & Johnson, 2008) we must establish
an appropriate construction graph and define the use of phero-
mone as well as heuristic information associated with the specified
problem (Abdallah, Emara, Dorrah, & Bahgat, 2009; Chen & Zhang,
2013).

The construction graph structure and pheromone matrix, with
the respective ACO-HC algorithm is presented in the following sub-
sections. This algorithm makes the association of employees to
tasks according to the needs of the tasks, evaluating the quality
of the solution. As presented in Fig. 4.

4.1. Construction graph

For constructing a solution the ants travel through the construc-
tion graph. The ants start from an initial node and then select the
nodes according to a probability function. This function is given
by the pheromone and heuristic information of the problem, their
relative influence is given by a and b, respectively (Berrichi,
Yalaoui, Amodeo, & Mezghiche, 2010; Dorigo & Caro, 1999;
Dorigo et al., 1996).

The first step is adapting the SPSP to graph representation. To
adapt the problem we use the heuristic information and phero-
mone to construct a directed graph. The employees must be
assigned to a project task, and their dedication to each task is rep-
resented in the graph TGP. We can use this representation to define
the construction graph. The proposed construction graph repre-
sents the association of employee and their dedication to a task.
This representation is constructed for each task in the TGP; it is
divided into a graph with node and edge. The construction graph
consists of each employee and their ratio of dedication contribu-
tions for the task, it is defined as den. This variable is density of
nodes and it is defined as:

den ¼ 1
mind

þ 1; ð14Þ

where mind is the lowest degree of dedication to a task. This struc-
ture is presented in Fig. 5. The employees dedication to a task can be
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Fig. 5. Construction Graph is a matrix CG ¼ den� E½ � with mind ¼ 0:25 for a task.
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0 or integer multiple of mind. We can describe the split operation
of a task as: first, generate a start node and insert into first
column column0. Second, generate the columns columni, with
i ¼ 1; . . . ; j E jf g. Each column consists in den nodes. Third, construct
an end node and put into the last column columnjEjþ1. Fourth, con-
structs edges, add edges between columns.

The ants travel to the start node to the end node choosing edges
from the column 1 to column j E jwithout returning, this because it
is a directed graph that goes from left to right. The ants choose only
one node per each column. When the ant completes a tour, the
dedication of employees to a task is complete. To calculate the ded-
ication of the employee i to the task, we just need the node j, with
column i and the calculation is j �mind.

These activities of ants must be done for each task in SPSP
model. The ants travel in random order selecting nodes. A tour cor-
responds to an assignment of employees to task and also deter-
mines the dedication to the task. Then we have to evaluate the
quality and feasibility of the solution generated.

The ants travel through the construction graph selecting ways
of probabilistically way, using the Eq. (15).

pt
ij ¼

sij
� �a gij

h ib

Pden
l¼0 sil½ �a gil½ �

b
; j 2 f1; . . . ;deng ð15Þ

where sij is the pheromone and gij is the heuristic information of the
problem on the path between node i to j in the graph CG for t task. a
and b are two fixed parameters, which are used to determine the
pheromone and heuristics influences. To determine the values of
a and b we can use empirical tuning of the variables. The phero-
mone sij and heuristic information gij are positive real number
< 1. The heuristic information can be defined according to different
strategies. That is explained in the following subsections.
4.2. Pheromone update

In the Hyper-Cube framework the pheromone trails are forced
to stay in the interval ½0;1� and Min–Max Ant System the phero-
mone stay in the interval smin; smax½ �. To adapt the Hyper-Cube
framework to MMAS we define a smin ¼ 0 and, smax ¼ 1, and repre-
sent the pheromone update rule. The MMAS behavior is not
altered, only a new pheromone update rule is created in order to
be consistent with HCF. The HCF can be adapted to any ACO algo-
rithm. Then two approaches are used to create a new proposal. In
MMAS only one single ant is used to update the pheromone trails
after each iteration, that ant can be the iteration-best ant or global-
best ant. The use of only one solution, for the pheromone update
allows improving the exploitation of the search space. For this rea-
son, the best solutions are used to reinforce the pheromone trails. A
good selection between iteration-best and global-best ant for updat-
ing the pheromone trails can control the search in the solution
space. When using only global-best, the solution can converge
quickly and lost exploration of solution space, with the consequent
danger of getting trapped in poor quality solutions. This problem is
minimized when iteration-best is selected for the pheromone trail
update since the iteration-best solutions may differ considerably
from iteration to iteration and a larger number of solution compo-
nents may receive occasional reinforcement. The best approach is
using mixed strategies like choosing iteration-best as a default for
updating the pheromones and using global-best only every fixed
number of iterations. Computationally we represent the evapora-
tion of pheromone and in addition the amount of pheromone in
the ant path through the graph once a tour is completed using
the following formula:

sij ¼ qsij þ ð1� qÞDsupd ð16Þ

where q is a rate of evaporation q 2�0;1�. If q is high, the new pher-
omone value is less influenced by Dsupd, but much influenced by the
previous pheromone value, vice versa. And Dsupd it is associated
with quality of the current solution of upd ant. upd ant is itera-
tion-best ant. We can use an updating pheromone strategy consid-
ering duration, cost, and overwork of the project as follows
(Johnson et al., 2006):

Dsupd ¼ ðwcospcos þwlenplen þwoverwpoverwÞ�1 ð17Þ

where plen is the total duration, pcos is the total cost of software pro-
ject, and poverw is the project overwork. If the solution is feasible
poverw ¼ 0;poverw > 0 otherwise. wcos;wlen, and woverw are values that
weight the importance of pcos;plen, and poverw of the software project.
These parameters are used to adjust the importance between
pcos;plen, and poverw using the same measurement. The Dupd is the
amount of pheromone added based on the quality of solution gen-
erated by upd ant.

4.3. Heuristic information

We need to represent the heuristic information, that informa-
tion is used to enhance the search ability of ants. The ants need
to find the proper nodes using the problem information. The ants
travel for a matrix mij as the node at column i and row j. To obtain
the dedication of an employee ei to a selected task, we must calcu-
late j �mind. We use two heuristic information; H1 and H2. H1
uses the dedication of employee ei to other task. If an employee
works more in the previous tasks, that employee will has less ded-
ication available for subsequent tasks. Consequently, the employee
have less probability to be assigned to the current task. The heuris-
tic information H1 h i½ � to select node i for task tk can be calculated
using Eq. (18).

h i½ � ¼
tmp den�i�1½ �

sum ; if allocD k½ � > 0:5;
tmp i½ �
sum ; else

(
ð18Þ

where

tmp i½ � ¼
ded i½ � þ allocD k½ � � 0:5; if allocD k½ � > 0:5;
ded i½ � þ allocD k½ �; else

�
ð19Þ

The SUM is the summation of all values of the array tmp, and it
can be calculated as follows:

sum ¼
Xden

i¼0

tmp i½ � ð20Þ

The components used in the previous formula are presented in
Table 2.

H2 uses a constant strategy as the remuneration of employees.
If an employee has a high remuneration is less likely to be selected.
If an employee has a low remuneration will have a high probability



Table 2
Components of heuristic information.

Item Description

tmp ¼ f1; . . . ;deng An array of temporal values
h ¼ f1; . . . ; deng An array of heuristic information for nodes
ded ¼ f1; . . . ; deng An array of dedication for candidate nodes
allocD ¼ f1; . . . ; jEjg An array with allocated dedications for employees
sum Is the sum of all array temp
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of being assigned to a task. The heuristic information H2 is an array
h i½ � for employee i can be calculated with Eq. (21).

h i½ � ¼ ðerem
i Þ

�1 ð21Þ
1

4.4. Algorithm description

The general structure of the algorithm is presented in Fig. 4, in
which some modifications added to the ones presented in Stützle
and Hoos (2000). A new assignation values to smax; smin and a
new pheromone update rules. ACO-HC algorithm to solve the Soft-
ware Project Scheduling problem can be described as follow:

Algorithm 1 – ACO-HC for SPSP Algorithm

1 Input: Problem instance I
2 Initialize the pheromone values
3 Repeat
4 For g ¼ 1 to G do
5 initialize process of ant
6 For a ¼ 1 to M do
7 For t ¼ 1 to T do
8 ant a travel on the matrix CG ¼ den� E½ � choosing

employee and their dedication to a task t
9 storing partial route for a ant
10 End for
11 compute the feasibility of a ant according as

established in Section 2.4
12 compute the fitness of the solution using Eq. (9).
13 End for
14 select the best solution
15 update pheromone values
16 End for
17 select the best global solution (optional)
18 apply pheromone update for global-best
19 Until (iterations or time) is complete
20 Output: An optimized solution for I

The algorithm firstly reads the problem instance. That instance
provides all the necessary data to generate the SPSP, such as num-
ber of tasks, and their required skills, number of employees, task
precedence information for generating the TGP, the set of skills
of every employee, and their remunerations. Then, we have to split
operation to the task and then using the ACO-HC to generate solu-
tions. To determine the quality of solutions, we use Eq. (9) that is
the fitness function. That function minimizes the cost and duration
for the whole project. Now we describe ACO-HC for SPSP as
follows:

� To initialize the parameters smax and smin. a and b, number of
ants M, and number of iterations G.
� To initialize the pheromone values; to put the pheromone on

the edge of the construction graph CG, then to initialize the
pheromone to smax.
� Ants constructs solutions. Each ant travels through the con-
struction graph selecting nodes. It is to fix the dedication degree
of the employees in the task. When an ant completes a tour,
repeats his process for the next task. Finally when the tours
for all tasks are finished a solution is constructed.
� Now we analyze the solution and evaluate the quality using the

fitness function.
� To update the pheromone values; select the best ant feasible or

infeasible and deposit the pheromone on path.
� To start the next generation. A new ant generation starts the

route, when the ant ends update the pheromone values. Repeat
this until the termination condition is satisfied.
� To obtain the optimal solution for SPSP.

5. Experimental results

In this section we present the experimental results. First, we
describe the programing environment. We implement the algo-
rithm in Java using a Intel core i7, 2,0 Ghz, 4 GB of RAM PC running
Windows 7 Professional.

Second, we describe the characteristics of the instance set. We
use instances generated by the same generator using in Xiao
et al. (2013) and Alba and Chicano (2007). The generator 1 creates
random instances, but we use the set of available instances with the
same parameters used by Xiao and Alba. The instances have different
number of tasks, employees, skills, and the task precedence graph
(TGP). The instances are labeled as <employees>e_ <tasks>t_
<skills>s. The instance set used has 5;10;15f g employees,
10;20;30f g tasks, and 5;10f g skills.

The algorithm was ran 10 trials for each instance and we report
the average value from than 10 trials. To compare the different
results we use the hitrate: feasible solutions in 10 runs, cost: aver-
age cost of feasible solutions, duration: average duration of feasible
solutions, and fitness: average fitness of feasible solutions. The
influence analyzes were conducted using the heuristic H1 for
ACO-HC.

5.1. Parameter tuning

It is known that the ACO algorithms are sensitive to changes in
parameters, that is why we conducted a series of experiments to
find the best parameter values. We define two sets of parameters;
fixed parameters such as number of iterations only determine the
limit of iterations, a and b are important parameters that have
been previously defined according to the literature and previous
experiments. The variable parameters which we must define its
value are m and q. These parameters can strongly affect the perfor-
mance of the algorithm, so we tested different values.

We used 10e_10t_10s instance with mind = 0.25 to tune the var-
iable parameters. mind is the lowest degree of dedication to a task
and is defined by the problem, the fixed parameters used are a ¼ 1,
b ¼ 2, and number of iterations Nit ¼ 1000. To guarantee the inde-
pendence between m and q, we performed tests by fixing a vari-
able and varying other, and vice versa. The results presented in
the Fig. 6 indicate that the best results are obtained with the com-
bination of m = 200 and q ¼ 0:02. Then we conducted a series of
experiments to display the convergence according iterations. In
Fig. 7(a), we set q =0.02 and vary m. In Fig. 7(b) we set m = 200
and vary q.

We can observe in Fig. 7(a) that the fitness obtained with differ-
ent number of ants. We demonstrate that the best fitness (low fit-
ness) is obtained with m = 200 and m = 300 and the worst fitness is
obtained with m = 100 and m = 10. To obtain the best results in
http://tracer.lcc.uma.es/problems/psp/generator.html.

http://tracer.lcc.uma.es/problems/psp/generator.html
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shortest time, we used m = 200. With m = 300 the solutions have
the same fitness to m = 200, but there is a higher computational
cost of executing 300 instead of 200 ants.

In Fig. 7(b) we observe the different fitness obtained with
q ¼ 0:01, q ¼ 0:02, q ¼ 0:08, and q ¼ 0:4, for this parameter the
best fitness is obtained with q ¼ 0:02. When q ¼ 0:01 the fitness
converge too slowly, if the q is very large (0.08 or 0.4) the
fitness converges very fast to a suboptimal value, with q ¼ 0:02
converges smoothly to fitness better value.

According to the data collected and analyzed, we can summa-
rize the best parameters to use for our algorithm. For variable
parameters have m = 200, q ¼ 0:02, and the fixed parameters
a ¼ 1, b ¼ 2, Nit ¼ 1000. these parameters will be used in the next
experiments.
Table 3
Results with number of task = 10, 20, 30 using heuristic H1.

Instance Task Hit rate Fitness plen pcos

5e_10t_5s 10 100 3.136531 23 836531
5e_20t_5s 20 30 8.566778 64 2166660
5e_30t_5s 30 – – – –

10e_10t_5s 10 100 2.134546 13 834546
10e_20t_5s 20 30 6.741111 45 2241111
10e_30t_5s 30 – – – –

5e_10t_10s 10 100 2.875215 20,7 805790
5e_20t_10s 20 20 10.720411 83 2419718
5e_30t_10s 30 – – – –

10e_10t_10s 10 100 2.612948 17 912948
10e_20t_10s 20 50 6.249782 42 2049782
10e_30t_10s 30 – – – –

Table 4
Results with number of employees = 5,10,15.

Instance Employees Hit rate Fitness plen pcos

5e_10t_10s 5 100 2.875215 20.7 805764
10e_10t_10s 10 100 2.612948 16.2 916730
15e_10t_10s 15 100 1.906068 12 706077
5.2. Convergence analysis

In order to analyze the convergence of the algorithm, we use
the best settings obtained according to the results presented in
the previous section with two different instances. To demonstrate
de convergence of ACO-HC algorithm to feasible solutions, we
present the average of project overwork poverw in 10 runs and
1000 iterations for 10e_10t_10s and 5e_10t_10s instances. We
consider a solution feasible if can make the project complete and
project overwork is 0 (i.e., poverw ¼ 0).

In Fig. 8 we present the convergence of two instances using
ACO-HC. In the instance 5e_10t_10s (Fig. 8(a)) the initial solu-
tions are not feasible, but around 200 iteration poverw converges
to 0. In the instance 10e_10t_10s (Fig. 8(b)) the convergence to
feasible solution is at 400 iterations, we observe a difficult to
converge to feasible solutions. This does not imply better
solutions, only indicates when it is possible to obtain feasible
solutions.

We can see in Fig. 9 the convergence to better solution per
instance using ACO-HC. For instance 10e_10t_10s (red line) we
can obtain better solutions from iteration 400 and converges
slowly to a best solution, in instance 5e_10t_10s (blue line) we
can obtain better solutions from iteration 200, but converges to a
solution faster. In addition, we compare the best solutions, because
they are different instances.
5.3. Influence of task number

We used 12 instances to analyze the influence of the number of
tasks on the solutions. The instances have the same values per each
of 4 groups. We compare the number of task with 10;20;30f g, the
number of employees and skills remain constant for each group.
The results are show in Table 3.

First we observe that the hit rate decreases when the number of
tasks increases and is more difficult to find feasible solutions.
When t ¼ 30 was not possible to find feasible solutions in the four
groups using the heuristic H1. We can infer that increasing tasks
employees have more work and is more difficult to meet
poverw ¼ 0. Furthermore we can see that increasing tasks directly
increases the cost and duration of the whole project.
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Table 5
Results with number of skills = 5,10.

Instance Skill Hit rate Fitness plen pcos

5e_10t_5s 5 100 3.136531 23 828603
5e_10t_10s 10 100 2.875215 20 812555

5e_20t_5s 5 30 8.566778 64 2166660
5e_20t_10s 10 20 10.720411 83 2422418

10e_10t_5s 5 100 2.134546 13 819925
10e_10t_10s 10 100 2.612948 15 905118

10e_20t_5s 5 30 6.741111 45 2241111
10e_20t_10s 10 50 6.249782 50 1937460

Table 6
Comparison with other techniques.

Instance Algorithms Hit rate S Fitness

5e_10t_5s ACO-HC (H1) 100 0.0329 3.1365
ACO-HC (H2) 100 0.0515 2.7750
ACS 100 3.5149
GA 95 3.5874

5e_10t_10s ACO-HC (H1) 100 0.0447 2.8752
ACO-HC (H2) 100 0.0749 3.3449
ACS 100 3.4049
GA 90 3.5287

10e_10t_5s ACO-HC (H1) 100 0.0075 2.1345
ACO-HC (H2) 100 0.0423 2.0967
ACS 100 2.5773
GA 97 2.8413

10e_10t_10s ACO-HC (H1) 100 0.0927 2.6129
ACO-HC (H2) 100 0.0405 2.2660
ACS 100 2.6440
GA 100 2.5371

10e_20t_5s ACO-HC (H1) 30 0.2462 6.7411
ACO-HC (H2) 90 0.3338 6.8769
ACS 67 6.3856
GA 19 6.2766

10e_20t_10s ACO-HC (H1) 50 0.5054 6.2497
ACO-HC (H2) 100 0.1321 5.5963
ACS 65 6.2984
GA 71 6.1869

10e_30t_5s ACO-HC (H1) - - -
ACO-HC (H2) 70 1.8055 10.6546
ACS - - -
GA - - -

10e_30t_10s ACO-HC (H1) - - -
ACO-HC (H2) 90 0.4124 10.1649
ACS - - -
GA - - -

The best fitness per instance is bold.
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5.4. Influence of employees number

We used 3 instances to analyze the influence of the number of
employees on the solution. We only use three instances that repre-
sent the range of possible values for the number of employees in
the available instances. These instances represent the minimum
value, a mean value and a high value of employees. We compare
the number of employees with 5;10;15f g, the number of task
and skill remain constant for each group, the maximum dedication
of employees and salaries are the same. The results are shown in
Table 4.

First we note that the only resource for this problem is human
resources (employees) and the duration of the tasks is directly
related to the use of this resource. Given that the duration of a task
vary according to workers assigned to that task, it is important to
show that this interaction can vary the duration of the project.
We only interpret the data presented in the graphs, which are only
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a particular case study based on the tested instances. These results
are not generalizable to real cases; they lack complex situations
that can occur in actual software projects.

We compared the results and found that by increasing the num-
ber of employees decreases the project duration. The hit-rate for
these instances is always 100%, but we cannot find a direct relation
with the project cost. When the number of employees is 5 the pro-
ject cost is greater than when using 15. We can see this in the
Table 4 and Fig. 10.

As it is show in Table 4 the fitness of the solutions has a direct
relationship to the number of employees, when the number of
employees increases also increases the fitness. If we observe con-
vergence to feasible solutions on the Fig. 11, with increasing the
number of employees is more difficult to find feasible solutions.
The algorithm converges more slowly when the number of
employees is greater.

5.5. Influence of skill number

In order to analyze the influence of the required skills for task
on the solutions, we used 8 instances. The instances have the same
values per each of 4 groups. We compare the number of skills with
5;10f g, the number of employees and tasks remain constant for

each group. The results are show in Table 5.
According to the table, the instances with t ¼ 10 all have a hit

rate of 100%, while instances with t ¼ 20 change depending on
the number of skills. We can see that for instances with t ¼ 20,
increasing the number of skills required for a task, it is more diffi-
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cult to find feasible solutions. The results do not allow us to deter-
mine a direct relationship, between the increase in the skills
required by a task and an increase in the duration or cost of the
whole project.
5.6. Comparative results with other techniques

To evaluate our proposal, we decided to compare it with other
techniques. This presents multiple problems, because the instances
are generated according to the parameters entered by each
researcher. Another problem is that we have not found published
results that clearly indicate all the parameters of their instances.

Some results are presented in Xiao et al. (2013) by Xiao, using
the similar parameter to our instances. Xiao presents results using
Ant Colony System (ACS) and Genetic Algorithms (GA). To under-
stand clearly we transform the fitness presented by the author as
fitness�1 to obtain the same fitness used by us. The comparative
results are presented in Table 6.

From Table 6 we can compare the hit rate and the fitness of the
solutions. In this case for the instances with task = 10 always have
a hit rate of 100% for all numbers of employees or skills. But in the
instances with task = 20, ACS has better hit rate in one instance.

Regarding the fitness we can see that ACO-HC (H1 and H2) has
better results for all instances with task = 10. On the other hand, for
instances with 10e_20t_5s, the best results are using GA, but in
10e_20t_10s the best result is obtained with ACO-HC (H2). If we
analyze the results with task = 30, the best results is obtained with
ACO-HC (H2), the other algorithms could not obtain results. For all
instances with task = 30 we used Nit = 2500.

Then we can compare the two heuristics H1 and H2. We can
observe the standard deviation presented in the Table 6. We pres-
ent comparative boxplot between H1 and H2 in Fig. 12. The results
show that H2 performs better than H1, but H1 has a lower stan-
dard deviation in small instances, so we could indicate that the val-
ues are more concentrated on average.
6. Conclusion

We have presented a new approach to solve the SPSP using a
Max–Min Ant System algorithm. As a result, we propose imple-
ment the Hyper-Cube framework for ACO to improve the
algorithm.

The design we proposed is a representation of the problem in
order to ACO algorithm can solve it, proposing a construction graph
and two pertinent heuristics. Furthermore, we defined a proper fit-
ness function able to allow optimization of the generated solutions.

We present the experimental results for our proposed algo-
rithm, and we conducted a series of tests to get the best parameter-
ization and evaluate the convergence to better solutions. The tests
were performed using different numbers of tasks, employees, and
skills.

The results were compared with Ant Colony System and Genetic
Algorithms. We demonstrate that our proposal gives the best
results for smaller instances. For more complex instances was
more difficult to find solutions, but our solutions always obtained
a low cost of the project, in spite of increasing the duration of the
whole project. For the instances with 30 tasks only solutions are
obtained with heuristic H2.

Our contribution in this research was to take a problem which
has been little exploited and have proposed a new algorithm to
solve it. For this, we have taken two approaches; the solution
through the Max–Min Ant System and Hyper-Cube framework
for ACO, which have been tailored to meet SPSP. We have shown
empirically that the new algorithm is able to deliver better solu-
tions with better hit rate for multiple instances tested. Therefore
it is a feasible and robust proposal. SPSP is a problem that brings
us closer to the estimation of software projects, but still has simpli-
fied features that should be changed to real cases.

As future work, we hope to integrate the search autonomously,
to improve the algorithm and the search for solutions. There are
studies that have reported good results with these techniques
(Crawford, Soto, Castro, & Monfroy, 2011; Crawford et al., 2013b;
Monfroy et al., 2013).
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