
Information and Software Technology 56 (2014) 873–889
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Individual empowerment of agile and non-agile software developers
in small teams
http://dx.doi.org/10.1016/j.infsof.2014.02.005
0950-5849/� 2014 Elsevier B.V. All rights reserved.

⇑ Tel.: +47 55584103.
E-mail address: bjornar.tessem@uib.no 1 http://www.agilemanifesto.org.
Bjørnar Tessem ⇑
Dept. of Information Science and Media Studies, University of Bergen, PO Box 7802, 5020 Bergen, Norway

a r t i c l e i n f o a b s t r a c t
Article history:
Received 14 February 2013
Received in revised form 2 January 2014
Accepted 22 February 2014
Available online 3 March 2014

Keywords:
Software development
Agile methods
Empowerment
Context: Empowerment of employees at work has been known to have a positive impact on job motiva-
tion and satisfaction. Software development is a field of knowledge work wherein one should also expect
to see these effects, and the idea of empowerment has become particularly visible in agile methodologies,
in which proponents emphasise team empowerment and individual control of the work activities as a
central concern.
Objective: This research aims to get a better understanding of how empowerment is enabled in software
development teams, both agile and non-agile, to identify differences in empowering practices and levels
of individual empowerment.
Method: Twenty-five interviews with agile and non-agile developers from Norway and Canada on deci-
sion making and empowerment are analysed. The analysis is conducted using a conceptual model with
categories for involvement, structural empowerment and psychological empowerment.
Results: Both kinds of development organisations are highly empowered and they are similar in most
aspects relating to empowerment. However, there is a distinction in the sense that agile developers have
more possibilities to select work tasks and influence the priorities in a development project due to team
empowerment. Agile developers seem to put a higher emphasis on the value of information in decision
making, and have more prescribed activities to enable low-cost information flow. More power is obtained
through the achievement of managing roles for the non-agile developers who show interest and are rich
in initiatives.
Conclusion: Agile developers have a higher sense of being able to impact the organisation than non-agile
developers and have information channels that is significantly differently from non-agile developers. For
non-agile teams, higher empowerment can be obtained by systematically applying low-cost participative
decision making practices in the manager–developer relation and among peer developers. For agile
teams, it is essential to more rigorously follow the empowering practices already established.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

It is now more than 10 years since the agile movement started
to have a significant impact on the software development industry.
Since then, agile development approaches have grown from a
somewhat obscure status to mainstream, and we have been intro-
duced to the meanings of Extreme Programming [1], Scrum [2] and
Lean Development [3]. The proponents of agility suggest a collec-
tion of technical and social practices that, when combined, consti-
tute development processes that are distinct from traditional
software development, and, supposedly, should ensure higher
quality in software at less cost.
The agile manifesto1 gives us an idea of what agile software
development is, by emphasising ‘‘Individuals and interactions over
processes and tools’’, ‘‘Working software over comprehensive docu-
mentation’’, ‘‘Customer collaboration over contract negotiation’’ and
‘‘Responding to change over following a plan’’. But in research we also
need to understand the theoretical underpinnings of the concept in
order to be able to analyse it rigidly, and complement the formula-
tions found in the manifesto. Theoretical elaborations include Conboy
[4] who defines agility in software development as emerging from a
flexible and lean development team. Vidgen and Wang [5] define
agility as built on three principles adopted from complex adaptive
systems theory: (1) match co-evolutionary change rate, (2) optimise
self-organising, and (3) synchronise exploitation and exploration of

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.02.005&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2014.02.005
mailto:bjornar.tessem@uib.no
http://www.agilemanifesto.org
http://dx.doi.org/10.1016/j.infsof.2014.02.005
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

874 B. Tessem / Information and Software Technology 56 (2014) 873–889
knowledge. For Lee and Xia [6], central foundations for agility include
the concepts of autonomy and team diversity.

Empowerment in the workplace has a long tradition in prac-
tice and research, and there is a substantial literature describing
the effects of empowerment in different types of organisations
[7–13]. Positive effects on productivity, product quality and
innovation, as well as affective reactions like workers’ job satis-
faction and motivation are found both in blue-collar and knowl-
edge-based lines of business [14], and thus we also expect to
see some of these effects in the software development organisa-
tion as a result of introducing empowering processes and struc-
tures. The empowerment concept is often discussed in terms of
structural empowerment, that is, the organisation’s approach to
empower its workers [15], and psychological empowerment,
that is, the individual person’s feeling of having control of one’s
own work [16]. Mathieu et al. [17] assert that psychological
empowerment is highly dependent on structural empowerment.
Further, psychological empowerment is again an antecedent for
performance, job satisfaction and motivation [18], which are
some of the effects aimed for and claimed for in agile software
development. Hence, empowerment is a concept worth analys-
ing in relation to agile software development. Still, research that
studies the effects of empowerment in software development is
scarce, even though there is some evidence that agile processes
increase job satisfaction and motivation, and that this is caused
by agile developers being more empowered than non-agile
developers [19]. On the side of this argument, it is worthwhile
mentioning here that research has not shown a correlation be-
tween job satisfaction and productivity [20], but job satisfaction
has the positive effect of less turn-over in the business, and
with that less cost on recruitment and training [21]. This alone
makes empowerment a goal worthwhile pursuing for any soft-
ware development organisation.

Much of the professional literature on agile software develop-
ment focuses on practices that aim to enhance productive social
interaction and participation, like stand-up meetings, iteration
planning, iteration retrospective, and even pair programming,
which all contribute to shaping decision processes and empowering
the development teams and the individual developers [1,22–25].
McHugh et al. [26] discuss how such practices have higher motiva-
tion as a consequence when enacted in meaningful ways. Even if
empowerment is not mentioned explicitly in theoretical studies
of agility in software engineering, empowerment as a concept is
deeply intertwined with the theoretical concepts that define agil-
ity: Team empowerment has been considered a foundation for
leanness [27], which is central with Conboy [4]; it is overlapping
strongly with the concept of team autonomy and self-organisation,
which is considered central by Lee and Xia [6] and Vidgen and
Wang [5]; and it is also considered a result of the team’s ability
to, on its own, effectively explore and exploit new knowledge in
the work process [15], which is claimed by Vidgen and Wang [5]
to be central for agility. Maruping et al. [28] use a control theory
perspective and shows that the successful agile teams have control
modes that provide team autonomy in development combined with
a strong focus on the project objectives. We see that concepts that
contribute to defining agile software development both practically
and theoretically, like participation, interaction, autonomy, self-
organisation, and knowledge exploration, all have a strong ‘‘team
empowerment’’ association to them. Hence, empowering the devel-
oper team is deeply melded into the effective realisation of agile
software development.

In the professional literature, practices and perspectives in agile
development have the aim of increasing the performance of the
team, often by enabling empowerment of the individual developer
within the team. Some examples of agile practices that potentially
empower the individual are
� Stand-up meetings: Developers present their problems, suggest
solutions to other developers and to the team, and choose tasks
for their own work day.
� Pair programming: Developers work together with another

developer, influence the partner’s work, and learn about solu-
tions in the current project as well as available technologies.
� Shared code ownership: Developers have the freedom to change

other team mates’ solutions, whenever the developer finds it
necessary.

Individual, affective effects like higher job satisfaction and
motivation are known to be a consequence of individual, psycho-
logical empowerment [29]. At the same time we know that
empowered teams have a higher level of job satisfaction [30]. This
higher level applies at both the individual level and at the team le-
vel [31]. Since team empowerment is so central in an agile soft-
ware development organisation’s overall approach, it could with
its implementation through the agile practices found in the litera-
ture, potentially lead to the effects of individual psychological
empowerment, and further to job satisfaction and motivation for
the individual. But, whether the agile practices in fact leads to a
higher level of individual empowerment than found elsewhere,
and if so, how strong it is, is not obvious. Only through empirical
studies can we find out what these effects are.

At the same time, even though non-agile software development
organisations work according to processes whereby empowering
practices are not explicitly emphasised, this does not mean that
the non-agile developers are not empowered. For example,
Shrednick et al., from before the agile development era, discuss
how empowerment improve on information systems development
[32]. In many cases, non-agile development organisations have
adopted supplementary practices that ensure high levels of partic-
ipation in decisions regarding their work, as exemplified by many
software process improvement initiatives [33]. These are forms of
empowerment that may have the same effects as the practices
found in agile software development. There is as of yet no reason
to claim that non-agile software developers are less empowered
than agile.

This study examines how empowerment for the developer is
enabled in both agile and non-agile software development organi-
sations, and the aim is to determine whether there is a difference
between agile and non-agile development processes in this regard
and further, to what extent the individual developer is empowered.
As mentioned, agile processes implicitly suggest high team
empowerment levels, but how this contributes to how the single
developer feels empowered is not clear. Since empowerment is
an underlying, maybe even defining facet of agility, we should ex-
pect to see some differences.

The starting point for this research is to try to identify the dif-
ferences in how developers in software development organisations
are empowered, then further to discuss why these differences oc-
cur, and finally ask ourselves whether we can conclude that there
are differences in levels of empowerment, and what consequences
these have. To answer these questions, data from 25 semi-struc-
tured interviews with agile and non-agile developers from Canada
and Norway are used. The interviews are with businesses develop-
ing software for the oil industry, finance industry, graphical print-
ing, public information systems and several other areas. The data
came mainly from programmers and managers, but also the occa-
sional tester and business representative. The interviews are ana-
lysed qualitatively according to a conceptual model that includes
factors that influence empowerment, including involvement,
power, information flow and sense of impact.

The article first presents some background material on empow-
erment and how it is studied in general and then continues with an
overview of some of the research that has been conducted on this

B. Tessem / Information and Software Technology 56 (2014) 873–889 875
within the software development literature. In Section 3, a more
elaborate version of the problem statement is formulated and the
research model and the analysis categories used in the qualitative
analysis are presented. Sections 4–6 present the collected data and
an elaborate analysis of the interviews splitting the developers into
agile and non-agile groups, and analysing the data according to
categories for forms of involvement (Section 4), structural empow-
erment (Section 5) and psychological empowerment (Section 6).
The findings, showing significant differences as well as similarities,
are discussed in Section 7. In Section 8 some limitations are dis-
cussed and opportunities for further research are presented, before
the article concludes in Section 9.

2. Background literature

2.1. Empowerment at the workplace

Empowering the workforce has been documented to have posi-
tive consequences both for the employee and the business
[7,15,34]. Empowered employees enjoy their jobs, become more
motivated, stay in their jobs and feel ownership of the business’s
goals. The business gains economically due to less turnover and
lower training costs, and may lead to better performance, although
this is disputed [20,35].

A definition of structural empowerment can be found in Mills
and Ungson [11], where they define it as entailing ‘‘the delegation
of decision-making prerogatives to employees, along with the dis-
cretion to act on one’s own’’. Mills and Ungson distinguish empow-
erment from participation – ‘‘a communication process or
technique to solicit and use employee feedback in the decision-
making process’’, and delegation of work tasks – ‘‘discretionary
control for specific activities that fall within officially prescribed
limits’’. Participation and task delegation are viewed as tools that
support empowerment.

Lawler [10] emphasises that among the structural factors that
enable empowerment is first of all power, but also structures for
giving employees access to relevant information for decision mak-
ing, and enabling them to do their job by providing means to in-
crease the worker’s knowledge. Finally, in the successful
empowering organisation, a system for rewarding the employees
is necessary. These four structural factors (power, information,
knowledge and reward) are repeated by for instance Riordan
et al. [15], and Bowen and Lawler [7].

Several authors argue that not only structural or organisational
empowerment is necessary in order to gain the benefits searched
for [12,13]. In particular, they claim that psychological attributes
like an individual’s perceptions of personal control, proactiveness
and understanding of the social context or organisation are essen-
tial. They base their views on Thomas and Velthouse [16], who de-
fined the concept of psychological empowerment as consisting of the
following four cognitions: meaningfulness, competence, self-deter-
mination and impact. Meaningfulness is the employee’s perception
of the value of the work done, competence is the employee’s belief
in his or her own ability to do a job well, self-determination is the
perception of autonomy at work and impact is the employee’s
perception of being able to influence the workplace. In much of
the literature, psychological empowerment is considered an effect
of structural empowerment combined with other factors like indi-
vidual characteristics, work design, leadership and organisational
support [17]. Further, it has been shown that psychological
empowerment leads to higher performance, job satisfaction, moti-
vation and other outcomes [36]. Fig. 1 shows how a chain of factors
from structural empowerment through psychological empower-
ment enable valuable outcomes for the organisation.

Empowerment in organisations is first of all enabled by struc-
tural means. Managers use different approaches to empower their
workers, such as quality circles [37], total quality management
(TQM) [38] or employee suggestion systems [39]. Hackman [40] fo-
cuses on how to enable teams to organise their own work, enabling
them to construct their own structures and practices for monitor-
ing, improving and managing the work. Such team self-manage-
ment models have had a great influence on agile methods [41],
and are central in both XP and Scrum. The concept of team empow-
erment is about how teams are enabled to control their own work
[31], and is often analysed from the same perspectives as individual
empowerment [18], with structural and psychological empower-
ment as a chain of factors that influence performance and affective
outcomes. In general one expects individuals to be empowered
when their team is empowered [42], as team empowerment leads
to individual empowerment. Still, all team members may not nec-
essarily be empowered to the same extent. For instance, the more
knowledgeable and experienced team member will most often
have more to say in decisions regarding how the team shall proceed
on a task.

2.2. Empowerment and decision making in software development

Empowerment in software process improvement (SPI) is central
in Moe’s PhD thesis [43], which is based on a series of articles on
SPI in plan-driven development [44], transitions from plan-driven
to agile development [45] and team building in agile software pro-
cesses [46]. A critical view on how empowerment is realised in
agile teams is found in work by McAvoy and Butler [47], who
among others point to the group think problem, exemplified by
the Abilene paradox (a group agrees on something nobody wants
because everyone thinks the others want it), as a cause of ineffi-
cient decision making. The previous authors have an analytical fo-
cus on team empowerment and less on the individual developer. In
addition, a few articles considering the individual’s participation
and empowerment are worth mentioning. Melnik and Maurer
[19] document that agile developers are more satisfied and moti-
vated at work, and in their study, the developers suggest empow-
erment as one of the reasons for this. A small case study by this
article’s author (Tessem et al. [48]) describes how a growing Scrum
development organisation with a high degree of empowerment is
able to maintain the workers’ job satisfaction and motivation.
The author [49] has also used Wilkinson et al.’s [50] escalator of
organisational participation and analyses interview data from dif-
ferent software organisations to describe how levels of participa-
tion vary in different organisation types.

Decision-making processes are related to empowerment, and as
for empowerment in software development work, research work
on decision making per se in software development organisations
is scarce. But many types of activities in software development in-
volve decisions that have significant consequences on the process
and the final product. Examples of rather technical practices that
have strong elements of decision making are code reviews [51]
or pair programming [52], and these techniques have been exten-
sively studied with a focus on productivity and quality [53,54].
White Baker [55] discusses how to construct a situational develop-
ment process, which is an example of participative decision mak-
ing at an organisational level.

More focused studies on how software development decisions
are made include work by Aurum and Wohlin [56] and Alenljung
and Persson [57], who have studied decision making in require-
ments engineering with different research perspectives, and Zan-
nier et al. [58], who have studied how design decisions are made
in software teams. Drury et al. [59] show how good decisions in
agile teams are hindered by the way the software development
organisation implements the development process. They list six
obstacles to decision making that are strongly related to features
of how decisions are made and implemented:

Fig. 1. The chain of effects from structural empowerment to organisational outcomes.

876 B. Tessem / Information and Software Technology 56 (2014) 873–889
1. Agile team members are unwilling to commit to a decision and
rely on the Scrum master for decisions.

2. Agile teams face conflicting priorities for decisions.
3. Decisions are based on unstable staff availability during an agile

iteration.
4. Agile team members are not implementing decisions and are

relying on others for decisions.
5. Agile team members are not taking ownership of decisions

despite ASD team autonomy.
6. Collaborative group decision making on ASD teams prevents

experts from making decisions.

The obstacles are exemplified in six case studies. All these
obstacles relate strongly to empowerment, and add to the motiva-
tion for studying how empowerment of software team members is
enacted.

3. Problem statement and analytical framework

As described in the professional literature, agile software devel-
opment is very focused on simplicity in process and communica-
tion, allowing teams and individuals to make central decisions,
and allowing the team and the individual to quickly change direc-
tions in work [1–3,22]. These are all features that contribute to
empowerment, even though empowerment as such is not a
much-mentioned concept in this literature. An exception is the lit-
erature on lean programming [3], which puts an emphasis on team
empowerment. The connection to individual empowerment is that
the practices that enable team empowerment in agile software
development are components of the structural empowerment
within agile software organisations, further contributing to indi-
vidual empowerment, both structurally and psychologically.

As for plan-driven (or non-agile) software development meth-
ods, they do to a slight extent focus on social practices. The re-
search mentioned in the Section 2 suggests that there are some
differences in how agile and non-agile developers are empowered,
but there is still not a deep understanding of which structural and
psychological factors create a difference in how software develop-
ers influence their own work in agile and non-agile teams.

On this background it should be worthwhile to investigate what
agile and non-agile processes imply in terms of individual empow-
erment. This means that we first of all have to gain insights in how
empowerment is reached in different software development
organisations through structural means, then investigate whether
there are any differences at a deeper level, analysing the structural
and psychological factors of empowerment, and finally whether
these differences lead to a difference on how individual empower-
ment is realised and perceived.

In this article, answers to these questions can be found by anal-
ysis of interview data with regard to the factors of the two types of
empowerment. Structural empowerment is supported by the fol-
lowing factors from the literature:
� Power: The ability of employees to have an influence on deci-
sions regarding issues at the workplace.
� Information: The ability of an employee to get access to informa-

tion needed for the best decision making in work tasks.
� Knowledge: The ability of an employee to obtain the necessary

skills to do the work and make good decisions.
� Reward: The way an employee is credited for participating in

decision making, information sharing and training.

Psychological empowerment is supported by the following fac-
tors from the literature:

� Meaningfulness: The employee’s personal assessment of the
value of a work goal or purpose.
� Competence: The employee’s personal assessment of one’s own

ability to perform the job skilfully.
� Self-determination: The employee’s perception of one’s own

autonomy in initiation and continuation of work activities.
� Impact: The employee’s assessment of one’s own ability to influ-

ence strategic, administrative and operational outcomes at
work.

The power factor is of particular importance, as it defines roles,
responsibilities and possibilities for involvement for the individual
software developer. To get a richer understanding of the power fac-
tors, categories of (forms of) involvement are added to the concep-
tual model. The power factor of Lawler [10] is closely related to
Mills and Ungson’s [11] participation and delegation concepts,
which are two forms of involvement in the organisation’s decision
processes. We should consider the decision-making activity also to
include taking the steps to initiate a decision-making process, and
the workforce’s ability to initiate processes thus constitutes a third
form of involvement in decision processes. Initiation as a form of
involvement can be viewed as distinct from the empowerment
concept, on a level with participation in decision making and del-
egation of decision making power in limited areas. Initiation was
used as a concept by the author [49], who expanded Wilkinson
et al.’s [50] participation escalator with the organisation’s accep-
tance of initiatives for decision making by the employees, as the
data showed that this occurs frequently in software teams. In con-
trast to that work, in this article initiation is not found to be a spe-
cial form of participation, but a particular form of involvement.
Involvement as used in this work thus takes three different forms:

� Participation: An employee is asked for information or opinions
on a matter of decision, and/or is explicitly involved in making
the decision.
� Delegation: An employee is assigned to a particular task and has

responsibility making the decisions needed to fulfil that task.
� Initiation: An employee initiates activities with the aim of hav-

ing the organisation make a decision on a matter of relevance to
the employee’s work.

Table 1
Empowering practices discussed in interviews.

Empowering practice discussed Potential categories

Control of low-level design/
coding

Power, self-determination

Ability to choose own work tasks Power, self-determination,
meaningfulness, participation, delegation

Initiate trials of new technology Knowledge, competence, initiation
Participate in estimation Power, competence, impact, participation
Participate in high-level design Power, competence, impact, participation
Participate in process

improvement
Power, competence, impact, self-
determination, participation

Get information and domain
knowledge from customer

Information, knowledge, competence,
initiation

Get technical knowledge in order
to solve task

Knowledge, competence, delegation,
initiation

Collaborate with peers Information, knowledge, meaningfulness,
initiation, participation

Team and individual rewards Reward, impact, meaningfulness

B. Tessem / Information and Software Technology 56 (2014) 873–889 877
The data are analysed by finding quotations in the interviews
that relate to the 11 bulleted factors above. Fig. 2 shows the fac-
tors/categories used in the data analysis and how they are assumed
to contribute to empowerment. The arrow from psychological
empowerment to affective and economic reactions is not studied
here, as this study is limited to emphasise on how empowerment
is enabled and not its effects.

The choice of a qualitative approach in this study was moti-
vated in the search for answers to questions on how empowerment
is enabled and its varying realisations, and to a little extent to
quantitative comparisons of empowerment and its consequences.
A grounded theory study [60,61] could also be considered here to
get a theoretical understanding of the relationship between soft-
ware development practice and empowerment, but as the empow-
erment concept already has been well studied, the categories
identified in earlier empowerment studies were considered to be
the relevant ones for this study.

The data used for doing this analysis are only the 25
semi-structured interviews with software developers. As the
author was visiting the companies for interviews at their localities,
this was and opportunity to get an impression of their work site,
even though this has only been used as informal background
knowledge in the analysis. It was also asked for documentation
of their development processes and practices. Only two of them
had this and/or were willing to share this, so these documents
did not influence the data analysis much. One could have added
observations at the sites in the data collection. This was omitted,
as it was prioritised to get data from many diverse organisations,
and such observation studies would take much time.

The topics of the interviews were not on the 11 categories
themselves, but on decision making, ability to participate in deci-
sion making and ability to act on those decisions, all within the
software development processes. The empowering practices
touched upon as topics in the interviews were chosen on the basis
of what normally goes on in a software team, identified on basis of
the author’s own practice, research, and teaching in software engi-
neering. The topics are given in the left column of Table 1. The idea
was that involvement or control in the practices covered in the
interview would, through the data analysis, reveal how the devel-
opers were empowered in what is standard software development
work. In the right column of Table 1 we find the categories (out of
Fig. 2. Empowerment and its factors and outcomes in software development organisatio
factors included in the analysis.
the 11 previously identified) that the discussion of a particular to-
pic potentially could give data for.

Interviewees were from two different countries, Canada (14)
and Norway (11), where a total of 12 worked in or with agile teams,
and 13 in non-agile teams. All team could be characterized as small,
as they at most consisted of 8–10 persons. Most of the developers
were programmers, but there were also testers (2), customer repre-
sentatives (1), project managers (2), software architects (1) and
requirements specialists (1). For those working in non-agile teams,
many of the programmers also had technical project management
responsibilities to some extent. All the agile developers worked
with variations of Scrum, whereas in the non-agile teams there
were one team (5 developers) using Rational Unified Process
(RUP), another team (3 developers) using an in-house-developed,
plan-driven, iterative method and also developers (5) who worked
in teams with no specified development methods.

The interviewees in Norway were found by contacting varying
software development companies in Norway, asking for access to
interviewees. To some extent, the author’s contact network was
used to identify the companies. In Canada, respondents were
self-recruited. A request for participants was emailed to members
of a professional organisation within software development. All the
ns. The boxes and ellipses included in the larger, dotted rectangle are concepts and

Table 2
Overview of interviewees.

Norway Canada

Agile Scrum team – finance industry (2 interviewees) Scrum team – oil industry (5)
Scrum team – graphical/marketing services (3)
Scrum consultant – large consultant company, works as project manager (1)
Scrum consultant – own company, works as project manager (1)

Non-agile RUP team – telecommunications (5) Team w/structured iterative method – accounting services (3)
Team w/no methodology – public administration (2) Team w/no methodology – airport administration system (1)
Team w/no methodology – public legal systems (1)
Team w/no methodology – climate control for buildings (1)

878 B. Tessem / Information and Software Technology 56 (2014) 873–889
Canadian interviewees were developers who responded to this
invitation. Recruitment of respondents in qualitative research is a
challenge as it in the use of contact networks and channels like
professional organisations may lead to a bias in the responses.
However, by recruiting from two different countries, although with
similar cultures, a better balance could be achieved. The respon-
dents also had varying age, experience, and industrial background,
contributing to a representative respondent group.

It must be mentioned that the interviewees came from teams
that were not necessarily working with software development
according to ideal standards, and, accordingly, they do not represent
examples of prescribed practice. Still, the research questions are
about how empowerment is enabled in practice, and, in an imperfect
world, the near-ideal organisations are not necessarily the best to
get data from. Of course, they also do not cover the full spectrum
of software development organisations, but give us a width that cov-
ers much of what is business practice in agile and non-agile teams.
Table 2 summarises the distribution of the 25 interviewees accord-
ing to origin, being agile/non-agile and their domains.

The analysis was done in a qualitative manner, coding text ele-
ments (quotes) in all interviews with the 11 categories/factors.
Commonalities and variations in how the quotes relate to the par-
ticular category were noted, and further used to identify differ-
ences between agile and non-agile organisations. To improve
quality in the coding, two individual coding processes were done,
with a couple of months pause between them. The results were
integrated into a final coding of the interview texts.

The next three sections will discuss how the data fit into each of
the eleven categories. The analysis starts with involvement forms,
because these can be said to be a part of or tools for structural
empowerment and feeds into the understanding of structural
empowerment. Then analysis of the structural and psychological
empowerment categories follows.
4. Analysis – forms of involvement

In the conceptual model, the three categories for forms of
involvement are closely related to power, and will contribute to
the analysis of that particular factor. However, forms of involve-
ment are important in their own right, as each is also an underlying
contributor to the other structural empowerment factors. This
section is divided into three subsections, which cover each of the
involvement categories and their realisation in agile and non-agile
teams, before the analysis is summarised in a table. It must be
emphasised that the focus in the analysis is on how
programmers and testers are involved, not managers and business
representatives.
4.1. Participation

In this category, there is data that refer to situations where
developers participate in activities together with peers and other
stakeholder groups including managers, quality assurance people,
customers, etc.

The agile development methodologies have built-in practices
that open up for high degrees of participation in the development
work. The interview data include references to planning meetings
(scrums), estimating procedures like planning poker, retrospec-
tives, pair programming and several other practices that are part
of decision making in the daily operational work. A Scrum devel-
oper from Canada, working in-house with continuous development
of the software of a company selling graphical/marketing services
said:

‘‘My involvement is to be involved in the Scrum planning meet-
ings, evaluating the back log and then doing the poker planning,
and be part of the actual Scrum development team in imple-
menting the tasks and ultimately satisfying the stories’’. (Mas-
ter in software engineering, 10 years of industrial practice,
3 years with agile development)

An experienced agile developer, having been part of the agile
movement from early on, explained how participation from the en-
gaged developer ensures good decisions. Notice that the result de-
pends on a good team structure, including respect among team
members:

‘‘If you are engaged and respected, you know, you will partici-
pate and you will argue for what you believe in and then if
you have a good team structure you know you are going to
make a team decision and go on it’’. (Scrum project manager
from Canada, provide services as project manager to organisa-
tions that use agile methods, masters in computer science and
business administration, 20 years in industry, 10+ years with
agile development)

The non-agile developer also participates in operational deci-
sions about other developers’ work as well as bringing in others
in their decision making, but mostly these do not happen without
an invitation to do a design or code review, or when helping with
some difficult coding. In most cases, participation at this level is
considered a knowledge practice done when a developer is stuck
or needs to understand a topic better before starting a larger pro-
gramming effort.

Developers do participate in the managers’ decisions by invita-
tion, for instance when the manager needs input to an estimation
job, a technological choice or a process improvement effort. Many
of the interviewees in fact expressed scepticism towards too much
participation, as they felt they could lose focus and become less
productive. To be delegated a task is a preferred model. A Norwe-
gian developer working in two projects, one larger and one small
that he himself had responsibility for, said this:

‘‘My nearest manager, usually he gets a load of things to do, and
pass them out, and include us a little in what we should do,
what each developer should do, and what time it might fit.
But the planning and the execution of the project, we are not
much involved in that. I think that is enough for my part, since

B. Tessem / Information and Software Technology 56 (2014) 873–889 879
what I enjoy most is to develop’’. (Non-agile developer from
Norway, company that provides a mix of off-the-shelf and
tailored software for the public domain, bachelor in software
engineering, 7 years in industry, 3 years in current company)

Although agile teams engage in explicit, participative practices,
many of these seem to die out as projects approach their end, and
team leads take over more of the external communication, and
suggest work distribution in the team. A Canadian developer who
had been on a Scrum project in the petroleum production domain
for a year experienced this about retrospectives six months before
the final delivery of the project:

‘‘. . .we usually have the whole group, like all or everybody get
together and talk about what works, what doesn’t work. Now
we do it in a little group, or we don’t do it anymore, I think’’.
(Agile developer from Canada, in Scrum-of-scrums project mak-
ing tailored software for oil industry, master in computer sci-
ence, 8 years in industry, 1 year with agile, 1 year in current
company)

For both type of teams, developers mentioned the importance
of trustable teams, ability to agree on solutions and personal
matches for successful participative practices. Several of the inter-
viewees told stories about people they had problems cooperating
with, which had strongly influenced their willingness to work on
a task.

4.2. Delegation

In this category, there is data that refer to situations where
managers or presumably more powerful people delegate work to
one or several team members. The really main difference found
in the data here is that the agile team is the unit that is delegated
work in agile methods, whereas in non-agile methods, managers
always direct work to individuals. This also implies that coordina-
tion of work tasks is handled by the manager in non-agile teams. In
a plan-driven team in Canada, one of the developers said:

‘‘And they will basically hand out a feature to me or to one of
the other developers, but very vaguely, so they will for example
say, we need you to write a feature for login or something like
that’’. (Non-agile programmer from Canada, tailored software
for accounting systems using own in-house development
method, master in software engineering, 3 years in industry,
mainly in the current company)

This is in contrast to the agile team who instead of a single task
at the time gets a bunch of things to do, and have to organise them-
selves in order to finish those:

‘‘So then we basically try to collect a number of stories to com-
plete in that month that matches the amount of time we have,
in that month, based on our estimates. And we do everything
we can to finish them’’. (Agile programmer from Canada, in
Scrum-of-scrums project making tailored software for oil indus-
try, master in computer science, 7 years in industry, 2 years in
current company)

Notice that the agile programmer in the quote above talks about
we, i.e. his team, implying that he mainly sees the team as the unit
that has autonomy. The team delegation in agile development in
the data nearly always applies to the development of new func-
tionality, and in one case when a team was delegated the task of
developing its own way to do agile development. The agile devel-
oper would normally choose a new functionality development task
from those that are remaining on a backlog. However, they may
also be assigned to more trivial tasks like small bug fixes or even
needed substantial redesigns (in agile, called refactoring). In many
such circumstances, the agile project manager or others with
power will choose to assign work to the persons found most suited,
thus breaking the team empowerment philosophy. In one agile
team a test responsible did the assignment of bug fixes directly,
not the team itself, but to the individual developers that was seen
fit. Actually this was not part of the tester’s responsibilities, but
was a practice that the tester had adopted:

‘‘I tend to do that, and I tend to go through them, look at it and I
say ‘‘Well, these guys were just working on this. Makes more
sense for them to fix this than somebody that hasn’t been in
that code to look at it’’. And that’s the way I try to keep track
of who is looking at what and who is doing what. So if some-
thing comes up that looks related I can take it to them’’. (Agile
team member from Canada, mainly doing testing, bachelor in
accounting, 5 years in software industry, 2–3 years in current
company)

In both types of organisations, it is found that particular higher-
level tasks, like gathering and organising knowledge about a new
technology that is of potential use, are delegated to individuals.

4.3. Initiation

In this category there is data that refers to situations where pro-
grammers are initiating decision processes or work activities that
include other people. For example, a Norwegian Scrum developer
started to estimate bug fixes, and added these estimates into the
Scrum backlogs. This had not been done before, and everybody
was happy because it gave them better project control:

‘‘I started to do it. I had already started to write it down, but
then thought I had to ask. So I contacted the project manager
and asked. But then it was just positive answers right away’’.
(Scrum developer from Norway, provide tailored software for
banking, master in computer science, 2 years in industry, half
year with agile methods in current company)

Another example where the developer had to convince a man-
ager was a Norwegian developer in a small development organisa-
tion without a defined development method:

‘‘The project manager did after all realise that it was right to use
versioning [. . .] But to make a strict system for it, I had to insist,
like other times when it was necessary. But they actually did
realise that this was something that was definitely sensible’’
(Norwegian developer in in-hose software team for a company
that does building climate control systems, bachelor in com-
puter science, 20 years in industry, 15 in current company)

As expected, employees who come up with creative and useful
ideas are welcome in both types of development organisations. Ini-
tiatives are welcome, accepted and handled well in both agile and
non-agile teams. There are some distinctions regarding what kind
of initiatives developers do, for instance in a non-agile organisa-
tion, a developer will often be in a situation where a need exists
to initiate a code review including other developers (a low-level
decision-making activity), whereas developers in agile teams have
other means of verification of code and designs. Another example
is that the agile team members may sometimes have better access
to customer representatives, and the data show that they take ini-
tiatives directly towards those. In a non-agile organisation, this
could only happen through a mediating manager. A distinction is
that agile team members often will test and improve their initia-
tives among their team members before they (or the team) bring
it forth to managers, whereas in non-agile teams, the initiative is
almost always directed towards managers. Some non-agile devel-
opers in fact said it was felt problematic to bring colleagues into
a discussion, as they felt it was a waste of time:

Table 3
Summary of involvement patterns in software development organisations.

Agile Non-agile

Participation � Many team practices support participation � To provide information and knowledge to peers
� Practices tend to die out towards project ending � To support manager’s decision making

� Avoid unnecessary participation

Delegation � Development of new functionality is assigned to the team � Delegation always to individuals
� Other tasks are often delegated to individuals

Initiation � Is appreciated � Is appreciated
� Handled in teams before going to managers � Directly towards managers

880 B. Tessem / Information and Software Technology 56 (2014) 873–889
‘‘If you try to bring others into it, if you are trying to resolve it
with collaboration, then it usually ends up with, you know,
big waste of time’’ (Canadian non-agile developer, small team
working with airport administration system, master in com-
puter science, one year in industry, in current company only)

Table 3 summarises the findings in the analysis of involvement
practices. There is a clear distinction between agile and non-agile
here. It is evident that the team as an empowered unit stands
strong among the agile developers, as delegations and much of
the individuals’ initiatives and participation is directed to and
through the team. For the individual developer, this may be felt
as inhibiting in some cases, when the team disagrees, but also
strengthening when the team supports. The team does not have
such a role in non-agile development, which has the conse-
quences that developers will take individual initiatives towards
managers, and the individual’s participation in decision making
is on the courtesy of the manager. It is common in agile develop-
ment methods that developers choose their tasks from a backlog
or other collection of remaining tasks. On the other hand, agile
developers also do not choose their own tasks in large portions
of their work. The distinction here is not large, as much of soft-
ware development, perhaps most of it, is about bug fixes, testing
and redesigning the solutions.
5. Analysis – structural factors of empowerment

The structural factors that influence the ability to achieve
empowerment are power, information, knowledge and reward.
These factors will be addressed in turn.

5.1. Power

In non-agile teams, project managers, team leads or people in
similar types of managing positions have the power to instruct
each of the team members regarding work tasks and priorities. In
agile organisations, this is essentially done not to the single devel-
oper, but to the team as seen in the previous section. The team is
responsible for estimates and distribution of work within the team.
Developers may participate in such activities (estimates, task
assignment) also in non-agile teams, but managers have formal
responsibility for making the decisions. They often request input
for their decisions from developers, but not necessarily, and often
take those decisions themselves:

‘‘Pretty much, our planning team, which is like three guys,
which I’m not a part of would plan the release at a private meet-
ing, and they would basically, have people like me assigned to
the task when they are planning the release. And they would
assign during the first developer meeting during the month.
Yeah, basically top down’’. (Non-agile programmer from
Canada, tailored software for accounting systems using own
in-house development method, master in software engineering,
3 years in industry, mainly in the current company)
Coding, testing, bug fixing and lower-level designs are normally
considered work that the developers themselves can take care of in
both kinds of organisations. It also happens in agile teams that
managers suggest people to do particular tasks or even suggest de-
sign solutions, but it is still considered to be the team’s formal
responsibility to make the final decisions. Managers may also try
to steer the activities in general by introducing issues in the discus-
sion, like this experienced agile project manager, who uses his
experience to make the team focus on the right things:

‘‘I’ll ask for how do we want to tackle this, incorporate people’s
ideas. If I feel that we are missing something I may then say
‘Well how about this’, or ‘Do you want to do that’, so I don’t
think I’m dictating the approach, but I’m just trying to get res-
olution on, you know, let’s get this thing done and what are
people’s ideas on how we should do it’’. (Agile project manager
from Canada, contracting as project manager for agile projects,
bachelor in computer science, 20+ years in industry, 12 years
with agile methods)

There are indications in the data that developers in some agile
teams may have more possibilities to influence the customer or
product owner (a Scrum role). In a non-agile team, contact be-
tween developers and business would go through project manag-
ers, and managers would be able to control the communication
between those stakeholders. It is the manager’s decision to assess
the need for direct contact. In most of the agile companies repre-
sented in the data, we see the same, as for instance Scrum masters
work as mediators. But agile developers were in one of the cases
able to use direct channels to business representatives to provide
opinions or get information about some issue related to the soft-
ware under construction.

In non-agile teams management is enacted somewhat differ-
ently from agile teams where developers may have direct channels
to the business representatives, and also have institutionalised
participation in decision making. Non-agile managers, with their
position as mediators and responsibility as decision makers, have
significant power in deciding what the software should become
and how it should be developed. One developer working on a small
non-agile team making an airport administration system said:

‘‘Usually customers, if they want something, they won’t ask me,
they would talk to the customer satisfaction manager in our
company, and he’s a person who has a lot of knowledge about,
because he used to work in the customer environment, so he
has knowledge about what customer actually is looking for.
So usually requirements come through him. . .’’ (Canadian
non-agile developer, small team working with airport adminis-
tration system, master in computer science, one year in indus-
try, in current company only)

In non-agile organisations, we see that developers with experi-
ence and initiative gradually will drift into roles where they take
manager responsibilities according to the particular organisation’s
model. For instance, a developer will get responsibility for customer
contact, estimation and work distribution in a smaller project:

B. Tessem / Information and Software Technology 56 (2014) 873–889 881
‘‘I probably am the person in line to take on a little bit of extra
responsibility when we have people who are away or in partic-
ipating in planning activities as well. Part of it is also probably
showing interest to matters and I probably show interest by just
discussing it informally, asking questions about what’s coming
in the next release, things like that. Our management, our VP,
our president even, they probably know who is interested and
who is not’’. (Non-agile programmer from Canada, tailored soft-
ware for accounting systems using own in-house development
method, master in software engineering, 3 years in industry,
mainly in the current company)

The data do not show the same role evolution for the individu-
als in agile teams, but the experienced developers seem to be more
active and have more credibility in the decision-making processes
inside teams. An example where role change happened in an agile
team is found in one case with many developers and large, com-
plex software. They were using a Scrum-of-scrums approach (an
organisation where teams of Scrum masters have meetings to
coordinate their respective teams’ work), and here experienced
agile developers were put into a separate architecture team that
had responsibility for overall software architecture and large
refactorings, contributing to giving these developers more power
in the development process.

5.2. Information

In both agile and non-agile teams, one finds a variety of infor-
mation channels from personal communication via meetings to
documentation. Taking a look at those practices that are present
in our data and part of a prescribed methodology, it is found that
they differ significantly. Agile developers get information about
technical issues through pair programming, get daily updates on
project status and have meetings at the beginning and end of iter-
ations. In non-agile projects, developers use different forms of
written documentation, have fewer meetings on project status
and get updates on technical solutions in informal discussions
and ad hoc code and design review meetings. Both kinds of projects
have access to business representatives, but in non-agile projects
almost only through project managers/team leads.

There is a clear distinction in how people perceive the value of
information. In non-agile teams, developers often find that they get
insufficient information, but on the other hand they are concerned
that they will get too much information (information overload).
The developers think that there is a danger that irrelevant informa-
tion will take too much time. We also see that people tend to be
careful with sharing information, perhaps because of the implied
cost of distributing what one knows to one’s colleagues:

‘‘We talk less with the customer now than we did before. Now
we are kind of more screened, we are supposed to focus more
on development’’. (Non-agile developer from Norway, company
that provide a mix of off-the-shelf and tailored software for the
public domain, bachelor in software engineering, 7 years in
industry, 3 years in current company)

Non-agile developers also mention that they are often sloppy
with updating technical documentation, an important source for
future information needs. Some agile developers also mentioned
the amount of information as a problem, but on the other hand
the low-cost information channels realised in such teams seem
to allow information to flow more freely. One developer was satis-
fied with the possibility to get information from his colleagues in
an informal manner:

‘‘It is in a way a little bit like you ask very much, and then you
think, wow, it’s perhaps a bit too much, but it has never been a
problem, and it really must be so. If you start making assump-
tions that things surely are like that, then you risk spending
even more time on it’’. (Agile developer from Norway, software
for bank industry, master in software engineering, four years in
current company)

The agile developers are supposed to have contact with busi-
ness through business representatives who have a role as informa-
tion and knowledge providers to the developers. The close
customer contact is partly confirmed in the data, as seen in a story
about how an algorithmic problem was solved in a cooperative
process involving both customer representatives and
programmers. In some agile teams, information can flow rather di-
rectly between business and developers and vice versa. One of the
results is that business has higher trust in the development team.
One interviewee reported that the business representative, when
initially starting out with agile did not trust estimates and put little
emphasis on viewpoints coming from the developers, but after
they had worked agile for a while, this changed, and the develop-
ers’ views got to be considered important in discussions on project
progress:

‘‘As soon as they started noting that ours were pretty accurate
then it became, they started believing it again’’ (Canadian agile
project manager, contract in different industries, master in
computer science, 20+ years in industry, 10 years with agile)

On the other hand, there are examples in the data about how
other stakeholders like QA people do not feel comfortable with
the agile way of distributing information, and also about develop-
ers who do not always get the useful contact they seek with the
customer representatives.

5.3. Knowledge

Under this category is discussed the need for both technological
and domain knowledge, i.e. knowledge about the business area. It
is interesting to see how similarly the teams handle knowledge up-
date on technologies. For both agile and non-agile teams, the most
effective means of knowledge dissemination in the development
organisation is collaboration on a task like design, coding or assess-
ment of new technology. Non-agile developers do not work to-
gether much on coding directly, but use code and/or design
reviews to gain knowledge on design techniques or new technolo-
gies. Code reviews are also used as a tool to learn newcomers about
the local development practice:

‘‘For our newer developers, we basically require them to do
code reviews every week’’ (Non-agile programmer from Canada,
tailored software for accounting systems using own in-house
development method, master in software engineering, 3 years
in industry, mainly in the current company)

This is in contrast to agile developers who use pair program-
ming, i.e. collaborative coding, as a knowledge dissemination
approach.

Employees are given much freedom to initiate activities where
they find relevant knowledge for their project, and they may often
be asked to review one or a few technologies for potential use, and
report on that. This developer found out about a new xml parser
and informed the colleagues about it:

‘‘Without being asked, you go about and suggest using this one.
The result is that this xml parser has caught on around here.
Because everyone thinks it was much better than this Java
xml parser’’. (Non-agile developer from Norway, tailored soft-
ware for telecommunication, master in computer science,
5 years in industry, mainly in current company)

Table 4
Summary of structural factors of empowerment in software development organisations.

Agile Non-agile

Power � Operational tasks like coding, bug fixes, testing, and low level design � Operational tasks
� Team estimates, distributes work, and designs � Managers instruct on priorities, estimates, tasks, and even designs
� Managers facilitate activities � Managers control information flow to/from business
� Managers have some control of information flow to/from business � Managers occasionally involve developers

Information � Information channels are low cost: short meetings, pair programming, and
personal communication

� Information channels include larger meetings, documentation, and
personal communication

� Some direct access to customer representatives � Efforts regarding information exchange have low priority
Knowledge � Collaboration as a means of transferring knowledge � Collaboration as a means of transferring knowledge

� Freedom and resources to get knowledge � Freedom and resources to get knowledge
� Some direct access to domain experts

Reward � Perks at successful deliveries � Perks
� Recognition and credibility in team � Freedom to decide own work hours

� More power to individuals with initiative

882 B. Tessem / Information and Software Technology 56 (2014) 873–889
Access to business representatives to get domain knowledge is
found for some of the organisations in the agile data, but it is not
always easy to get access to the domain experts for agile develop-
ers. Customer representatives have other priorities and are contin-
uously busy with other activities than software development.

5.4. Reward

Data are not as rich on this category, particularly for the agile
developers. They mention perks like free lunches at the end of iter-
ations as an example of reward. They also seem to enjoy working in
agile teams and consider that a reward in itself, and they are also
satisfied whenever they get recognition from doing some good
work. As one of the Canadian agile developers said:

‘‘I think the work, the environment that we have here is quite
interesting. I think I’m very happy to be here. I’m honoured to
be in this project. I think it is a big challenge for me. I don’t think
there is a lot of companies out there to do something like this’’.
(Agile developer from Canada, in Scrum-of-scrums project mak-
ing tailored software for oil industry, master in computer sci-
ence, 8 years in industry, 1 year with agile, 1 year in current
company)

In non-agile teams, you see that trusted developers have similar
access to perks, flexible hours and freedom at work within the lim-
its of the delegated tasks. The distinction found in the data is that
in non-agile organisations, initiative and willingness to take on
challenging work will later on lead to more power and responsibil-
ity. Developers who do good jobs get more customer contact, and
start taking leadership responsibilities in smaller projects. How-
ever, some of the interviewees mentioned that not all developers
were willing to take on new responsibilities; they remained in pure
developer positions, as they enjoyed that kind of work much more.

Table 4 summarises the data on structural factors of empower-
ment. One clear distinction is found on how power is distributed,
where the agile developer through the team practices is able to
participate in estimates, task assignment and overall designs.
Information is less valued among non-agile developers, as illus-
trated by the lack of interest in maintaining the documentation.
The data suggest that there is a difference in the reward structures
in the sense that non-agile developers are more personally re-
warded, whereas knowledge management is handled in a surpris-
ingly similar manner in both kinds of organisations.

6. Analysis – psychological factors of empowerment

From empowerment research it is known that psychological
empowerment is a consequence of both structural empowerment
and other factors like individual characteristics, work design,
leadership and organisational support. When looking for psycho-
logical empowerment and relations to structural empowerment,
it is hard to control for all these factors. So, the approach is to look
for trends regarding psychological empowerment in the data that
are typical for the agile or non-agile organisation, and relations
to practices that are parts of structural empowerment.

6.1. Meaningfulness

Developers in all teams like to work with challenging new tasks,
and enjoy variation. If they experience that, they are also willing to
accept tasks that are tedious or uninteresting. Still, there is a ten-
dency that developers in non-agile teams get tasks that they feel
are irrelevant for their job. Some of the developers expressed
frustration with that. One developer felt that he was burdened
with filling in information in the database, which was not really
what a developer should do:

‘‘We maintain aircraft information. If a company has one addi-
tional aircraft to look after then we have to enter that information
into the system. To me that is not programming, you just enter
information about stuff’’ (Canadian non-agile developer, small
team working with airport administration system, master in
computer science, one year in industry, in current company only)

The communication practices among developers and from
developers towards customers found in agile are considered very
useful for work; developers get useful knowledge of technology
and domain and feel ownership of the product. A Norwegian agile
developer said:

‘‘There is very good collaboration in the group. And every time I
ask I get help, and I think that has been a positive experience.
And since I’m rather new, people are not negative when you
ask about things that maybe is a bit obvious for them’’. (Scrum
developer from Norway, provide tailored software for banking,
master in computer science, 2 years in industry, half year with
agile methods in current company)

Developers in non-agile teams also consider communication
practices to be valuable, like solving a coding problem with a col-
league, having some customer contact or understanding the
domain:

‘‘It’s always a lot to learn from people you are working with, and
that’s probably the best thing about it. If you’re working with
somebody who is more experienced that you, you can get a
lot from them, and if you’re working with somebody who is less
experienced than you, you can still learn a lot of things’’. (Non-
agile programmer from Canada, tailored software for account-
ing systems using own in-house development method, master

B. Tessem / Information and Software Technology 56 (2014) 873–889 883
in software engineering, 3 years in industry, mainly in the cur-
rent company)

Some non-agile developers complain about a lack of domain
knowledge and possibility for being updated on technological
knowledge. But they also accept the argument that too much infor-
mation and communication is expensive, and they support the
model that a developer should not necessarily have a complete
overview of the whole process. It is interesting to note that non-
agile developers find some practices to be meaningful; practices
that are typically criticised by agile advocates, like documentation
work, customer contact through managers, task distribution by
team leads and specialisation. One non-agile programmer in a Nor-
wegian RUP-team said:

‘‘We have not been so good at ensuring that all design is docu-
mented. It is a very big system, and things change a lot. We have
been clever to document, decisions, meetings, such things’’.
(Norwegian non-agile programmer, company selling telecom-
munications software, master in computer science, 7 years in
industry, 7 years in current company)

Overall, agile developers find decision-making practices in their
teams to be meaningful, but here the data show that they also com-
plain about long, meaningless meetings and unnecessary, ineffi-
cient communication with customer representatives, so the
difference with non-agile development is not that large. Some new-
comers in agile teams may feel redundant, having a rather passive
role looking at other developers’ programming or continuously
having to query busy and experienced people, and for some it is a
challenge to adapt to agile methods. On the other hand, once they
have worked agile for a while, agile converts do not want to return
to non-agile practices. According to one agile project manager who
has been in the industry promoting agile for many years:

‘‘Of the thirty companies I have worked with, none of them have
gone back to the way they used to work’’. (Agile project man-
ager from Canada, contracting as project manager for agile pro-
jects, bachelor in computer science, 20+ years in industry,
12 years with agile methods)

One thing they have in common is the continuous search for
improvements of their current software frameworks and tools,
and in both types of organisations, there seems to be a continuous
process of evaluating, discussing and introducing new technology.

6.2. Competence

All the developers seem to be satisfied with their own compe-
tence, and do feel that they are able to do their job and participate
in decision-making processes. Possible exceptions in our data are
found for one agile and one non-agile developer. The agile devel-
oper did not seem to adapt well to the agile work practices, and
did not feel well included in the team. The non-agile developer
had shifted technological specialisation several times, and felt that
he was not supported in his desire to specialise in a particular area.
He had discussed this with management and said:

‘‘I do not want to continue reading new and different books all
the time. It is very stressful, I feel. So I would like to specialise
more within one area’’ (Norwegian non-agile developer, in team
with undocumented method, bachelor in computer science,
20 years in industry, all the time with current company)

The general observation is that competence increases with
experience. Collaboration with your peers is a central means to be-
come better at your job, and with the increased competence you
also improve people’s ability to participate in decision making,
irrespective of development methodology.
6.3. Self-determination

Agile developers all report satisfaction with their ability to work
in their own manner; they select their tasks from a list, and accept
that they have to select the more boring tasks once in a while. Still,
we see that agile developers have to do bug fixes, refactorings or
handle immediate maintenance tasks under, if not direct orders,
considerable pressure to do the job:

‘‘One minute I might be looking at this, and then also there is a
problem in production, and when there is a problem in the pro-
duction those get high priority. And some of them we need to
look at right away. So I may be pulled off in a day, or there
may be a problem with the billing systems, within another pro-
ject’’. (Scrum developer from Canada, continuous in-house
development of software for graphical/marketing services, mas-
ter in software engineering, 10 years of industrial practice,
3 years with agile development)

Most often, the non-agile developers do not choose their own
tasks, but are given a mix of interesting and not-so-interesting
tasks. Even though they do not have the responsibility to select
themselves, they are often asked for their opinions, and often
heard. There is a distinction here between agile and non-agile,
but not as large as you would expect if you only read the profes-
sional literature on agile methods. A non-agile developer said
about his possibility to choose:

‘‘The project manager may have a suggestion about what we
should do, but we do the discussion in the project meetings.
We may say that this fits better with that person, and this per-
son could do that because he knows the code, and we move
stuff around. Sometimes you end up with tasks you don’t think
is very exciting, but in general I think most of us are quite open
regarding tasks. If you show some interest for an area, it is nat-
ural that you do it. So really, with the project managers sugges-
tions as a starting point, we decide ourselves what to do’’.
(Norwegian non-agile developer, RUP project, five years in
industry in same company all the time)

In both kinds of teams, people with specialities seem to be more
able to steer their own work. This again has a cost, as other devel-
opers often will have to wait for specialists to finish work with a
higher priority, which again leads to a sense of lack of control over
one’s own work.

Solutions are most often at the developers’ discretion, but they
have to adapt them to team practices. In both kinds of organisa-
tions, there are conflicts between the design preferences of differ-
ent persons, and that one sometimes has to accept other
developers’ solutions. This may not and should not be a problem
for most, but a couple of developers expressed frustration with
the process that led up to the design conflict they had experienced.
6.4. Impact

Agile developers seem to have a clear sense of the impact they
can have on their job. They are given influence through practices
with daily meetings, estimation and planning meetings and often
access to customers. Data show that on the other hand, access to
business representatives is not as common as prescribed in the
professional literature. Even one inexperienced Scrum master ex-
pressed frustration with access to business people:

‘‘I find it hard to get them to participate, because of everything
else they have to deal with it is hard to get them all in the room
at the same time. And I have really enforced getting them in on
the sprint planning days and most of them are committed to
that, but on other meetings and stuff I find this difficult’’ (Scrum

884 B. Tessem / Information and Software Technology 56 (2014) 873–889
master in Canadian team, master in computer science,
5–10 years in industry as programmer, 1 year as Scrum master)

Experience is central for impact. For instance, experience
with informal communication channels seems to be one way
of getting through to business people. In general, willingness
to participate and the sense of contributing increase with
experience.

A couple of agile developers in the data material chose to go for a
role as specialising in a particular job, i.e. database specialist or bug fix
coordinator, perhaps because it fits their competence and personality.
These two developers seem to prefer this situation, and obviously give
them more impact at the job. One of them mentioned an example:

‘‘A column was getting populated with value zero. And when I
talked to the developer, he said it should be either null or other
than zero. Then I say, ‘ok, there is a zero’. And I noticed that,
when I did a deeper search after a discussion with the person,
he had been declaring a variable initialised by default to zero
value. And as I spotted that code to him, he said: ‘I though I’d
done it. Let me fix it right away’’’. (Agile Canadian developer,
database specialist in Scrum-of-scrums team, software for
petroleum industry, master computer science, 10 years in
industry, one year in current company)

These examples show agile teams that break out of the pre-
scribed practice of not having specialised roles among developers.
It enables some developers to have more impact, but may take
away power from other.

Developers in non-agile teams seem to feel that their impact is
very much constrained to decisions on solutions and designs, and
as for agile developers, they are in addition allowed to influence
technological choices. They may offer suggestions, but decisions
are made elsewhere:

‘‘Basically, our VP or our design architect would be making the
decision of what to do when something is late. I could offer like
a suggestion, like I could say I can do everything except for this
feature by the end of the week. And it is still not my decision to
do it that way’’. (Non-agile programmer from Canada, tailored
software for accounting systems using own in-house develop-
ment method, master in software engineering, 3 years in indus-
try, mainly in the current company)

The non-agile developer’s impact grows with experience, but
only as a result of having gotten a leading position, for instance
as a project manager. In contrast to the situation in agile organisa-
tions, much of the attempts of the developer to have an influence
Table 5
Summary of psychological factors of empowerment in software development organisation

Agile

Meaningfulness � Wants variation, accepts tedious tasks
� Communication practices are valuable
� Agile decision making is meaningful

� Enjoys search for technological knowledge

Competence � Satisfaction with own competence

Self-determination � Developers are satisfied with possibility to choose
� Are sometimes assigned tasks
� Control over solutions
� Specialists are more in control

Impact � Satisfied with impact, includes also estimates, process, task
technological choices
� Some contact with business representatives

� Influence is directed through team
are directed towards managers and team leads. An experienced
non-agile developer said that he would normally go to the relevant
team lead, involve them and agree on a solution:

‘‘. . . involve varying other persons dependent on the problem. If
it is technical issues, frameworks, architecture, I would involve
the architecture team lead, or I could involve the gui architect. If
it is about requirements, it is natural to involve those who are
working with requirements’’. (Norwegian non-agile developer,
RUP team, telecommunications industry, master in computer
science, 7 years in industry in current company)

The lack of prescribed formal structures for communication
among non-agile developers seems to lead to fewer collaborative
efforts among developers to initiate and influence decisions made
by managers.

In Table 5 is found a summary of how the psychological factors
of empowerment are found in the interview data. There is no dif-
ference in how the two groups view their own competence.

Both groups find their way of working meaningful. Even though
the communication practices and the valuation of information are
different in the two groups, both find their own way of handling
communication with peers and others meaningful. As for self-
determination, both groups seem to have a great deal of control
over how they do their work. There is a marked difference in
how they experience their own impact on the work. We see that
the agile team and the way it is structurally empowered constructs
an environment for work that gives the individual developer signif-
icant impact on the process. The non-agile developer is more alone
in the efforts, but often gets significant impact in the form of new
responsibilities when doing good work.

7. Discussion

The first main conclusion to draw from the analysis is that both
agile and non-agile software developers are highly empowered, as
one should except in this kind of knowledge-based work. They
have extensive control over their daily work by doing design and
programming solutions much as they prefer within the constraints
defined by the system architecture and project resources. They are
structurally empowered by being given the ability to initiate and
participate in decision-making processes, and have rewarding
practices that contribute to their sense of meaningfulness. On the
psychological empowerment side, both groups find their work as
a whole and most work activities meaningful, feel that their com-
petence at work and options to improve their competence are good
s.

Non-agile

� Wants variation, accepts tedious tasks
� Occasional meaningless tasks
� Communication is valued, but too much communication
brings cos
� Enjoys search for technological knowledge

� Satisfaction with own competence

� Normally assigned tasks
� Occasionally able to influence task assignment
� Control over solutions
Specialisation gives control

assignment and � Impact on solutions and designs, and technological choices

� Experience and willingness creates leadership job
opportunities and power
� Little contact with business representatives
� Initiatives directed towards managers

B. Tessem / Information and Software Technology 56 (2014) 873–889 885
and at last, they both have a sense of having an impact on the
development team as well as on the products delivered.
7.1. The empowering structures

Even though all the developers have high degrees of empower-
ment, there is a significant difference in how the individual devel-
oper’s empowerment is realised among the two groups. The team
has a central place in the agile developer’s identity in the work-
place and further how other stakeholder relate to the developer’s
work. The individual empowerment of the agile developer is rea-
lised through work practices in the empowered team that enables
daily, weekly and monthly participation in not only programming,
but also estimation, architecture and process improvement. Tasks
are to some extent chosen by the developer, although not always.
The relationship between managers and developers is to a large ex-
tent canalised through the developer team as a unit. Within the
team, developers stand in a symmetrical relationship to each other.
The developers are individually rewarded within their teams by
getting recognition and more responsibility and trust after having
shown good work. Contact and collaboration with the customer are
normally enabled by managers who mediate contact, but it is also
realised by direct access to customer representatives. This facili-
tates some of the information exchange and building domain
knowledge. This is found in example stories where the developers
participate to change business priorities and the business repre-
sentatives modelling of their own domain. Still, in many agile
methods, the relationship between developers and customers is
considered to be very important, but the data here indicate that
it is not as strong as recommended. Only one of the teams had ap-
pointed business representatives (Scrum product owners) continu-
ously available at the development site. These difficulties with
involving customers more directly are well known and have also
been discussed in other research, for instance on how to establish
a better relationship with the customer in agile software develop-
ment [62].

Individual empowerment for the non-agile developer is like in
other standard hierarchical organisation structures. There are di-
rect lines from the manager to each individual developer, and the
manager mediates communication with the business. If projects
are with a team, the manager still takes responsibility for task
assignment and estimates. The individual developers are often
Table 6
A summary of empowering practices.

Empowering practice Agile

Control of low-level design/
coding

Full control for developers, in some teams as pair
programming

Ability to choose own work
tasks

When work is primary development of new
functionality, less common in bug fixes or refactori

Initiate trials of new
technology

Approved of by team and managers, gives credibility
team

Participate in estimation Agile team practices support this, is part of iteration
planning

Participate in high-level design Agile team practices support this, is part of iteration
planning and daily meetings

Participate in process
improvement

Agile team practices support this, is part of post-
iteration evaluation meetings, but is often skipped

Get information and domain
knowledge from customer

Directed through manager, some teams have direct
access to customer but not all

Get technical knowledge in
order to solve task

Approved of and considered part of the team’s
responsibility

Collaborate with peers Agile practices and guidelines like planning meeting
pair programming

Team rewards Perks like team lunches or other common activities
Individual rewards Recognition in team as result of initiatives and good

ideas
consulted, but the responsibility remains with the manager. The
communication among developers may be informal or in formal
procedures like code reviews, but is not regular. When the devel-
oper needs information, new knowledge and a critical look at code
or designs, the peer developers are contacted. The direct link be-
tween the manager and the individual developer is also visible in
how initiatives from the developer are directed to the manager. Re-
wards are also individual, in contrast to the situation in agile,
where team rewards like free lunches at a project’s termination
are more common. There is little communication and influence be-
tween developers and customers/business as most of this is nor-
mally channelled through a project manager.

To get a better overview of the distinctions at the structural le-
vel, Table 6 summarises how agile and non-agile teams handle the
empowering practices in software development, referring to the
topics covered in interviews as presented in Fig. 1.
7.2. From structural to psychological empowerment

According to the empowerment literature, the expected gains of
empowerment are to be seen when the individuals are psycholog-
ically empowered. Among the factors of psychological empower-
ment, impact is the one with most visible difference in how it is
realised for the individual developer. The agile developers build
their sense of impact on an ability to participate in a lot of team
decisions regarding the software project, whereas the non-agile
developers gain greater impact when as a result of good work
and initiatives, they move from a pure developer role. It is rather
typical for the non-agile developers to move towards more and
more responsibilities and management work, and thus increased
power in the development organisation is a part of the rewarding
structures. Most initiatives from the agile developers are directed
through the team, and if they get support in the team they are
heard by management. For these developers, the team works as a
quality assurance system on initiatives, and enables a potential
influence in higher-level decisions with which most seem to be
satisfied. As a whole, non-agile developers are less able to partici-
pate in higher-level decisions about the development team, project
and organisation. If they are, they are consulted by managers by
virtue of experience. So, team empowerment is a power structure
that contributes, in addition to more frequent direct customer
contact, to the impact agile developers have. Fig. 3 indicates the
Non-agile

Full control for developers, ownership to task and product

ngs
Manager delegates tasks after consulting developers

in Approved of by team and managers, gives more career opportunities

Manager decides after consulting developers

Developers and manager collaborate

Developers and managers collaborate on this, but it is rare

Directed through manager, developers rarely meet customers unless given
special responsibilities
Approved of in organisation, normally first by asking colleagues for tips.
Expected that own time is used for time-consuming learning

s, Ad hoc when in need for information or knowledge

Rare
Career opportunities for those who show initiative in solving problems

Fig. 3. From structural empowerment to individual power and sense of impact in
agile and non-agile software development organisations.

886 B. Tessem / Information and Software Technology 56 (2014) 873–889
differences in how impact is achieved, showing practices and fac-
tors that contribute to structural empowerment on the left-hand
side of the arrows, indicating a causal relationship.

For the agile developer, meaningfulness is obtained when they
get a variety of tasks, through which they are able to find the
knowledge they need, and they see the low-cost information chan-
nels and ability to participate in the team activities as contributing
to a meaningful work situation. In addition, variation and ability to
get the needed knowledge contribute to non-agile developers’
sense of meaning in their work. And this is supported in their
organisations, although through other power structures. As for
information channels, they are often in the form of textual and
graphical documentation, and non-agile developers feel that there
is a significant cost with information exchange through documen-
tation work, and, further, that work with creating and getting
information should be limited. An interesting observation is that
agile developers seem to want to stay agile when given the option
Fig. 4. How sense of meaningfulness is achieved in non-

Fig. 5. How sense of competence is achieved in no
to go back to non-agile ways, whereas the non-agile teams had an
ongoing discussion about turning to agile development methods.
Both parties find their jobs meaningful, and interviewees from
both sides expressed that they felt lucky being able to work with
software development in their particular company. Fig. 4 summa-
rises how meaningfulness is achieved.

The competence factor is the least different in the two different
groups. Developers in both types of organisations feel that they
have access to the needed knowledge, both regarding the technol-
ogy needed for the development project and domain knowledge.
They also seem to get the information they want from the informa-
tion channels they have. In agile teams, this is to some extent rea-
lised through direct contact with customer representatives, but for
both kinds of teams, the contact with customers is often routed
through project managers. The relation between structural
empowerment practices and the competence factor is summarised
in Fig. 5.

The sense of self-determination for the two groups is similar,
the main difference being that agile developers are able to choose
among tasks in many situations. In non-agile teams, task assign-
ment is a manager’s responsibility. Both types of teams have
control of how to solve the problems they are working with, both
doing the design choices, and gathering the knowledge and infor-
mation needed. Theories for agile development suggest diversity
in the team as a factor that enables agility [6]. And in our data, it
is evident that people that have some kind of specialisation, like
expertise in databases or user interfaces, perceive specialisation
as a feature that gives them a higher degree of self-determination.
This is even more pronounced in non-agile teams, where team
agile and agile software development organisations.

n-agile and agile development organisations.

Fig. 6. How sense of self-determination is achieved in non-agile and agile development organisations.

B. Tessem / Information and Software Technology 56 (2014) 873–889 887
members often have roles indicating their specialisation. Fig. 6
shows the features of structural empowerment that contribute to
self-determination.

Results on psychological empowerment suggest that the four
factors are additive [12]. With that premise, a conclusion of the
analysis is that the individual agile developer is empowered at a
higher level than the non-agile developer, mostly with the differ-
ence in the impact factor as a contributing factor. Still, both groups
are highly empowered, and the difference is not very large. Agile
developers do not always select their own tasks, and non-agile
developers do also meet business people on occasion. A couple of
stories from one of the agile teams show how agile team members
experience how difficult it is to abide by all the prescribed and
empowering practices, with some unwanted consequences.

The first story was told by a developer who had seen that very
experienced people working in a refactoring team suggested a re-
design that should improve the software. Their experience and po-
sition gave them a significant but not formal power, which again
resulted in a lack of protests being directed towards the suggested
solutions, which later was seen to be suboptimal. Even though the
developers were free to express criticisms against the design, the
experts’ credibility precluded this, and this cost a lot of rework.
The story is a reminder of the group think problem mentioned in
the work by McAvoy and Butler [47].

The second story is about a developer who did not adapt well
into the agile team, probably due to personality. He found a solu-
tion by volunteering for a job as database specialist, and gradually
grew into this specialist role where he controlled the development
of the databases for the software. As a consequence, the team has
grown vulnerable due to the risk of losing this person’s compe-
tence in the future, and he has gained influence on how the other
developers should develop the software. Fig. 1 shows how several
factors influence the relation between structural and psychological
empowerment (Individual Characteristics, Work Design, Leader-
ship, Organisational Support). The story above exemplifies how
individual characteristics influence how a person is empowered,
illustrating the complexity of the empowerment construct.
8. Limitations and future research opportunities

The findings here are based on a qualitative analysis of textual
data, using a structural–psychological model for empowerment,
and hence are dependent on the researcher’s theoretical sensitivity
and ability to interpret data in a way that compensates for biases.
To avoid this, the data has been read and categorised twice, with
some time delay in between, to identify variations in the research-
er’s interpretation over time and ensure a more critical view of the
interpretations. On the other side, the number of interviews and
the variation in organisational practices give the final results cred-
ibility and generalisability. Twelve agile and thirteen non-agile
developers from a variety of industries and practices ensure
breadth in the data. A possible weakness is that the teams are
small, and that the interview data do not have representatives
from larger plan-driven development projects. As the data, coming
from semi-structured interviews, are qualitative, it may be that
several issues are not handled to their full depth for all intervie-
wees, which further may imply that some potential relations be-
tween empowering practices, structural factors and psychological
factors may be missing, but the data are believed to be in confirma-
tion of the relations presented in the analysis.

For the non-agile development organisation, the findings sug-
gest that teams and their managers must establish practices that
bring developers into the decision processes, relieving the tradi-
tional power structures. We have to accept that there are situations
where plan-driven development (as well as short-term ad hoc
development activities) is necessary, but that should not necessar-
ily imply lower empowerment than in agile teams. Using low-cost
techniques for making team decisions and organising more fre-
quent information exchange activities with customers could en-
able more power to the individual developer and improved
information flow, considering the structural empowerment areas
where most could be gained. Also, non-agile teams seem not to
be coordinated in their efforts to improve knowledge on technol-
ogy and solutions. Initiatives are mediated through managers,
without being assessed by peers before coming to the manager
for a decision. Can we as researchers identify ways of enhancing
communication among team members other than long-lasting
meetings involving many stakeholders and many topics? After
all, there is a pronounced scepticism in non-agile teams towards
the practices used for information exchange today, due to the fact
that they are felt to cost too much.

For the agile teams, developers seem to be satisfied, but there is
a tendency to skip the prescribed empowering practices and drift
into unrecommended practices in certain situations, for instance
when priorities are changed when problems with systems opera-
tion occur, in the distribution of bug fixes, or when teams skip
communication practices when deadlines are getting close.
Short-term gains may be won from skipping team empowerment
practices, but may have unwanted effects in the long term by less-
ening the developers’ sense of responsibility, motivation and focus.
A constant awareness among both managers and within teams of
how these practices enable empowerment is necessary. Critical
assessments of consequences of introducing new practices and
abandoning old ones is a constant part of process improvement
activities in agile teams, but how practices affect empowerment

888 B. Tessem / Information and Software Technology 56 (2014) 873–889
is a dimension not very often considered, and could be researched
in more depth. Another question that should be investigated
regarding empowerment of agile team members, is whether it is
harder for the agile developer to get to a leadership position be-
cause personal initiative is not visible for outside observers like
managers and their likes? Willingness to take initiatives is a main
cause of increased power in non-agile teams.
9. Conclusions

Empowering practices is in research and professional literature
considered to be among the features of agile software development
that distinguishes it from non-agile or plan-driven methodologies.
During the analysis conducted here, this was found to be true with
some reservations. Agile developers have, through their participa-
tion in the empowered team, more individual power in higher-le-
vel decision making, and this is confirmed in their feeling of having
an impact on the organisation. They do also have information flows
in their companies that are significantly different from what is
found in more documentation-oriented development teams with
fewer meeting places for exchanging information. This contributes
to a variation among agile and non-agile teams in how meaningful-
ness is constructed for the individual developer. Even though social
and technological practices that enable empowerment are not al-
ways prescribed to the same extent in non-agile as in agile devel-
opment it is not right to say that non-agile teams are not
empowered, as they normally have a lot of control of their work
situation, and they are also satisfied with their work place.
Structural empowerment takes a different form in non-agile organ-
isations, but still leads to psychological empowerment. It is also
observed that agile teams are sloppy in their practices, influencing
the level of agility, and further leading to effects on how empower-
ment is realised, with unknown consequences for the team and
organisation.

Further research on how to assess and improve empowerment
in a software team, measure the effects of empowerment on the
organisation, and identify the influence of existing and new prac-
tices on empowerment is needed.

References

[1] K. Beck, C. Andres, Extreme Programming Explained: Embrace Change, second
ed., Addison-Wesley, 2004.

[2] K. Schwaber, Agile project management with Scrum, Microsoft Press,
Redmond, Wash, 2004.

[3] M. Poppendieck, T. Poppendieck, Lean Software Development, Addison-Wesley
Professional, An Agile Toolkit, 2003.

[4] K. Conboy, Agility from first principles: reconstructing the concept of agility in
information systems development, Inform. Syst. Res. 20 (2009) 329–354.

[5] R. Vidgen, X. Wang, Coevolving systems and the organization of agile software
development, Inform. Syst. Res. 20 (2009) 355–376.

[6] G. Lee, W. Xia, Toward agile: an integrated analysis of quantitative and
qualitative field data, MIS Quart. 34 (2010) 87–114.

[7] D.E. Bowen, E.E. Lawler, Empowering service employees, Sloan Manage. Rev.
36 (1995) 73–84.

[8] K. Dewettinck, M. van Ameijde, Linking leadership empowerment behaviour to
employee attitudes and behavioural intentions testing the mediating role of
psychological empowerment, Pers. Rev. 40 (2011) 284–305.

[9] S. Fernandez, T. Moldogaziev, Empowering public sector employees to improve
performance: does it work?, Amer Rev. Public Adm. 41 (2011) 23–47.

[10] E.E. Lawler III, High-Involvement Management, Jossey-Bass, San Francisco, CA,
1986.

[11] P.K. Mills, G.R. Ungson, Reassessing the limits of structural empowerment:
organizational constitution and trust as controls, Acad. Manage. Rev. 28 (2003)
143–153.

[12] G.M. Spreitzer, Psychological empowerment in the workplace – dimensions,
measurement, and validation, Acad. Manage. J. 38 (1995) 1442–1465.

[13] M. Zimmerman, Psychological empowerment: issues and illustrations, Am. J.
Community Psychol. 23 (1995) 581–599.

[14] D. Marsden, A. Cañibano, An Economic Perspective on Employee Participation,
in: A. Wilkinson, P.J. Gollan, M. Marchington, D. Lewin (Eds.), The Oxford
Handbook of Participation in Organizations, Oxford University Press, 2010, pp.
131–163.
[15] C.M. Riordan, R.J. Vandenberg, H.A. Richardson, Employee involvement climate
and organizational effectiveness, Hum. Resour. Manage. 44 (2005) 471–488.

[16] K.W. Thomas, B.A. Velthouse, Cognitive elements of empowerment – an
interpretive model of intrinsic task motivation, Acad. Manage. Rev. 15 (1990)
666–681.

[17] J.E. Mathieu, L.L. Gilson, T.M. Ruddy, Empowerment and team effectiveness: an
empirical test of an integrated model, J. Appl. Psychol. 91 (2006) 97–108.

[18] M.T. Maynard, L.L. Gilson, J.E. Mathieu, Empowerment—fad or fab? a
multilevel review of the past two decades of research, J. Manage. 38 (2012)
1231–1281.

[19] G. Melnik, F. Maurer, Comparative analysis of job satisfaction in agile and non-
agile software development teams, Springer Lect. Notes Comput. Sci. 4044
(2006) 32–42.

[20] H.D. Stolovich, Human performance technology: research and theory to
practice, Perform. Improv. 39 (2000) 7–16.

[21] W. Mobley, Employee Turnover: Causes, Consequences, and Control, Addison-
Wesley, NY, 1982.

[22] A. Cockburn, Agile Software Development, Addison-Wesley, Reading, MA,
2002.

[23] J. Highsmith, Agile Project Management: Creating Innovative Products,
Addison Wesley Longman Publishing Co., Inc., 2004.

[24] A. Kelly, Changing Software Development: Learning to Become Agile, Wiley,
2008.

[25] C. Larman, Agile and Iterative Development: A Manager’s Guide, Pearson
Education, 2003.

[26] O. McHugh, K. Conboy, M. Lang, Using agile practices to influence motivation
within IT project teams, Scand. J. Inform. Syst. 23 (2011) 59–84.

[27] J.P. Macduffie, Human resource bundles and manufacturing performance:
organizational logic and flexible production systems in the world auto
industry, Ind. Labor Relat. Rev. 48 (1995) 197–221.

[28] L.M. Maruping, V. Venkatesh, R. Agarwal, A control theory perspective on agile
methodology use and changing user requirements, Inform. Syst. Res. 20 (2009)
377–399.

[29] G.M. Spreitzer, M.A. Kizilos, S.W. Nason, A dimensional analysis of the
relationship between psychological empowerment and effectiveness
satisfaction, and strain, J. Manage. 23 (1997) 679–704.

[30] J.L. Cordery, W.S. Mueller, L.M. Smith, Attitudinal and behavioral-effects of
autonomous group working – a longitudinal-field study, Acad. Manage. J. 34
(1991) 464–476.

[31] B.L. Kirkman, R. Benson, Beyond self-management: antecedents and
consequences of team empowerment, Acad. Manage. J. 42 (1999) 58–74.

[32] H. Shrednick, R. Shutt, M. Weiss, Empowerment: key to IS world-class quality,
MIS Quarterly 16 (1992) 491–505.

[33] R. Conradi, T. Dybå, D.I.K. Sjøberg, T. Ulsund, Software process improvement:
results and experience from the field, Springer-Verlag, Berlin, Germany, 2006.

[34] A.A. Wilkinson, The Oxford Handbook of Participation in Organizations:
Oxford Handbooks in Business and Management, 2010.

[35] K. Dewettinck, J. Singh, D. Buyens, Psychological empowerment in the
workplace: reviewing the empowerment effects on critical work outcomes,
in, Vlerick Leuven Gent Management School, 2003, p. 26.

[36] S.E. Seibert, G. Wang, S.H. Courtright, Antecedents and consequences of
psychological and team empowerment in organizations: a meta-analytic
review, J. Appl. Psychol. 96 (2011) 981–1003.

[37] D.C. Hutchins, The Quality Circles Handbook, Pitman Press, New York, 1985.
[38] K.O. Cua, K.E. McKone, R.G. Schroeder, Relationships between implementation

of TQM, JIT, and TPM and manufacturing performance, J. Oper. Manage. 19
(2001) 675–694.

[39] M. Frese, E. Teng, C.J.D. Wijnen, Helping to improve suggestion systems:
predictors of making suggestions in companies, J. Organ. Behav. 20 (1999)
1139–1155.

[40] J.R. Hackman, The Psychology of Self-Management in Organizations, in: M.S.
Pallack, R.O. Perloff (Eds.), Productivity, Change, and Employment, American
Psychological Association, Washington, DC, 1986.

[41] N.B. Moe, T. Dingsøyr, T. Dybå, Understanding self-organizing teams in agile
software development, in: 19th Australian Conference on Software
Engineering, 2008, pp. 76–85.

[42] R.E. Quinn, G.M. Spreitzer, The road to empowerment: seven questions every
leader should consider, Organ. Dyn. 26 (1997) 37–49.

[43] N.B. Moe, From improving processes to improving practice: software process
improvement in transition from plandriven to change-driven development, in:
Department of Computer and Information Science, Norwegian University of
Science and Technology, Trondheim, Norway, 2011.

[44] N.B. Moe, T. Dybå, The use of an electronic process guide in a medium-sized
software development company, Softw. Process Improv. Pract. 11 (2006) 21–
3434.

[45] N.B. Moe, A. Aarum, Understanding decision-making in agile software
development: a case-study, in: Software Engineering and Advanced
Applications SEAA ‘08 34th Euromicro Conference, Parma, Italy, 2008, pp.
1089–6503.

[46] N.B. Moe, T. Dingsoyr, T. Dyba, A teamwork model for understanding an agile
team: a case study of a Scrum project, Inf. Softw. Technol. 52 (2010) 480–491.

[47] J. McAvoy, T. Butler, The role of project management in ineffective decision
making within Agile software development projects, Eur. J. Inform. Syst. 18
(2009) 372–383.

[48] B. Tessem, F. Maurer, Job Satisfaction and motivation in a large agile project,
lecture notes in computer science=, Lect. Notes Artif. Int. 4536 (2007) 54–61.

http://refhub.elsevier.com/S0950-5849(14)00047-0/h0005
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0005
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0005
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0010
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0010
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0010
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0015
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0015
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0015
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0020
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0020
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0025
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0025
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0030
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0030
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0035
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0035
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0040
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0040
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0040
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0045
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0045
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0050
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0050
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0050
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0055
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0055
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0055
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0060
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0060
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0065
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0065
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0070
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0070
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0070
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0070
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0070
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0070
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0070
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0070
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0070
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0075
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0075
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0080
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0080
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0080
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0085
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0085
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0090
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0090
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0090
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0095
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0095
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0095
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0100
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0100
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0105
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0105
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0105
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0110
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0110
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0110
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0115
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0115
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0115
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0120
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0120
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0120
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0130
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0130
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0135
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0135
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0135
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0140
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0140
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0140
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0145
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0145
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0145
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0150
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0150
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0150
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0155
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0155
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0160
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0160
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0165
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0165
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0165
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0180
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0180
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0180
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0185
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0185
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0190
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0190
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0190
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0195
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0195
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0195
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0200
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0200
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0200
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0200
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0200
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0200
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0210
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0210
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0220
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0220
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0220
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0230
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0230
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0235
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0235
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0235
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0240
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0240

B. Tessem / Information and Software Technology 56 (2014) 873–889 889
[49] B. Tessem, An empirical study of decision making, participation, and
empowerment in Norwegian software development organisations, Lect.
Notes Bus. Inform. Process. 77 (2011) 253–265.

[50] A. Wilkinson, P.J. Gollan, M. Marchington, D. Lewin, Conceptualizing Employee
Participation in Organizations, in: A. Wilkinson, P.J. Gollan, M. Marchington,
D. Lewin (Eds.), The Oxford Handbook of Participation in Organizations,
Oxford University Press, 2010, pp. 3–25.

[51] K. Wiegers, Peer Reviews in Software: A Practical Guide, Addison-Wesley,
Boston, MA, 2001.

[52] L. Williams, R. Kessler, Pair Programming Illuminated, Addison-Wesley,
Reading, MA, 2003.

[53] M.E. Fagan, Advances in software inspections, IEEE Trans. Softw. Eng. 12
(1986) 744–751.

[54] K.M. Lui, K.A. Barnes, K.C.C. Chan, Pair Programming: Issues and Challenges, in:
T. Dingsøyr, T. Dybå, N.B. Moe (Eds.), Agile Software Development: Current
Research and Future Directions, Springer-Verlag, Berlin, Germany, 2010, pp.
143–163.

[55] E. White Baker, Why situational method engineering is useful to information
systems development, Inform. Syst. J. 21 (2011) 155–174.
[56] A. Aurum, C. Wohlin, The fundamental nature of requirement engineering
activities as a decision-making process, Inf. Softw. Technol. 45 (2003) 945–
954.

[57] B. Alenljung, A. Persson, Portraying the practice of decision-making in
requirements engineering: a case of large scale bespoke development,
Requirements Eng. 13 (2008) 257–279.

[58] C. Zannier, M. Chiasson, F. Maurer, A model of design decision making based
on empirical results of interviews with software designers, Inf. Softw. Technol.
49 (2007) 637–653.

[59] M. Drury, K. Conboy, K. Power, Obstacles to decision making in Agile software
development teams, J. Syst. Softw. (2012).

[60] B. Glaser, A.L. Strauss, The Discovery of Grounded Theory: Strategies for
Qualitative Research, Aldine Publishing Company, Chicago, 1967.

[61] M. Birks, J. Mills, Grounded Theory: A Practical Guide, Sage Publication,
London, 2011.

[62] A. Martin, R. Biddle, J. Noble, An ideal customer: a grounded theory of
requirements elicitation, communication and acceptance on agile projects, in:
T. Dingsøyr, T. Dybå, N.B. Moe (Eds.), Agile Software Development: Current
Research and future Directions, Springer-Verlag, Berlin, 2010, pp. 111–141.

http://refhub.elsevier.com/S0950-5849(14)00047-0/h0245
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0245
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0245
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0250
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0250
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0250
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0250
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0250
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0250
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0250
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0250
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0255
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0255
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0255
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0260
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0260
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0260
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0265
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0265
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0270
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0270
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0270
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0270
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0270
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0270
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0270
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0275
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0275
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0280
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0280
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0280
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0285
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0285
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0285
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0290
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0290
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0290
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0295
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0295
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0300
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0300
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0300
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0305
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0305
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0305
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0310
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0310
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0310
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0310
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0310
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0310
http://refhub.elsevier.com/S0950-5849(14)00047-0/h0310

	Individual empowerment of agile and non-agile software developers in small teams
	1 Introduction
	2 Background literature
	2.1 Empowerment at the workplace
	2.2 Empowerment and decision making in software development

	3 Problem statement and analytical framework
	4 Analysis – forms of involvement
	4.1 Participation
	4.2 Delegation
	4.3 Initiation

	5 Analysis – structural factors of empowerment
	5.1 Power
	5.2 Information
	5.3 Knowledge
	5.4 Reward

	6 Analysis – psychological factors of empowerment
	6.1 Meaningfulness
	6.2 Competence
	6.3 Self-determination
	6.4 Impact

	7 Discussion
	7.1 The empowering structures
	7.2 From structural to psychological empowerment

	8 Limitations and future research opportunities
	9 Conclusions
	References

