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Context: Software ecosystems are increasingly popular for their economic, strategic, and technical
advantages. Application platforms such as Android or iOS allow users to highly customize a system by
selecting desired functionality from a large variety of assets. This customization is achieved using
variability mechanisms.
Objective: Variability mechanisms are well-researched in the context of software product lines. Although
software ecosystems are often seen as conceptual successors, the technology that sustains their success
and growth is much less understood. Our objective is to improve empirical understanding of variability
mechanisms used in successful software ecosystems.
Method: We analyze five ecosystems, ranging from the Linux kernel through Eclipse to Android. A qual-
itative analysis identifies and characterizes variability mechanisms together with their organizational
context. This analysis leads to a conceptual framework that unifies ecosystem-specific aspects using a
common terminology. A quantitative analysis investigates scales, growth rates, and—most impor-
tantly—dependency structures of the ecosystems.
Results: In all the studied ecosystems, we identify rich dependency languages and variability descriptions
that declare many direct and indirect dependencies. Indirect dependencies to abstract capabilities, as
opposed to concrete variability units, are used predominantly in fast-growing ecosystems. We also find
that variability models—while providing system-wide abstractions over code—work best in centralized
variability management and are, thus, absent in ecosystems with large free markets. These latter
ecosystems tend to emphasize maintaining capabilities and common vocabularies, dynamic discovery,
and binding with strong encapsulation of contributions, together with uniform distribution channels.
Conclusion: The use of specialized mechanisms in software ecosystems with large free markets, as
opposed to software product lines, calls for recognition of a new discipline—variability encouragement.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Large software ecosystems implement variability—the diversity
of systems they offer—using radically different implementation
techniques, also known as variability mechanisms. Consider the
Linux kernel and the Android application platform for mobile
devices. The former is a highly configurable system that imple-
ments variability in the source code, by conditionally compiling
the desired functionality. The latter is a service-oriented architec-
ture that encourages variability by letting users easily install new
extensions (apps). Yet, both successfully facilitate, manage, and
technically support a high degree of customization freedom for
the intended recipients of the systems.

The Linux kernel and Android are examples of two major classes
of large, highly successful software ecosystems. Linux manages
variability centrally, carefully controlling the admission of new
features into its official release. Android manages variability
decentrally, embracing and encouraging variability within a free
market of apps. Both systems rely on different mechanisms to
achieve their goals.

The Linux kernel uses mechanisms known from software
product line engineering (SPLE) [1,2]. SPLE allows companies to
efficiently create portfolios of systems in an application domain
by leveraging the commonalities and carefully managing the
variabilities among the systems [3]. For instance, the Linux kernel
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supplements conditional compilation with a variability model,
which abstractly represents thousands of variabilities, such as driv-
ers and processor architectures. Such models are popular means to
manage variability. Despite using mechanisms of SPLE, the Linux
kernel is more than a product line—it is a software ecosystem [4].
Around 7800 developers from 800 companies have helped to more
than double the code base from 6.6 M to 15 M lines of code (LOC)
within seven years [5].

Android also manages huge variability, but in a more composi-
tional and open way. Users derive a concrete system by selecting
apps from online repositories using an installer tool—in effect,
composing their system from third-party components (apps). In
contrast to Linux, Android has no centralized and integrated vari-
ability model, but describes variability information decentralized
within each app. Android is also an ecosystem, but unlike Linux’s
respectable, yet controlled growth, Android has virtually exploded
with tremendous growth rates, offering over one million apps
today.

Research has addressed software ecosystems, but focused on
economic, strategic, and organizational aspects [6–8], less on tech-
nology [9]. What mechanisms are effective in practice, and in what
context? What are their core characteristics? While variability
mechanisms in software product lines are reasonably well
researched [10,11], their role in supporting a software ecosystem
is much less understood [9]. In fact, developing models that
describe ecosystems [12] and defining theories that explain con-
cepts and causalities [13], are key research challenges in this field.

We address this gap with an exploratory study of the solutions
to variability in software ecosystems. We analyze five software
platforms and their surrounding ecosystems: the eCos operating
system (OS), the Linux kernel project, the Debian Linux distribu-
tion, the Eclipse Integrated Development Environment (IDE), and
the Android OS. Some of these are among the largest and fastest-
growing ecosystems in existence today. All successfully facilitate
massive variability, while approaching variability from different
organizational and business perspectives and using different vari-
ability mechanisms.

Our research objectives are (O1) to identify and analyze vari-
ability mechanisms in ecosystem platforms, and (O2) to discover
relationships and potential causalities among the mechanisms.
We strive to understand how software ecosystems technically
facilitate variability. Our study involves a qualitative analysis of
the variability mechanisms used in the platforms and of the orga-
nization of their development and variability management. A
quantitative analysis investigates scales, growth rates, and—most
importantly—the structure of the dependencies among the vari-
abilities in the ecosystems. We describe observed phenomena
and core differences discovered through our analyses, develop
hypotheses, and raise questions for future research.

We contribute: (C1) a conceptual framework defining key char-
acteristics of variability mechanisms and their organizational con-
text within and across the ecosystems; (C2) an instantiation of the
framework with empirical data for each ecosystem; (C3) a set of
core differences across the subjects, and hypotheses as proposed
explanations; and (C4) static analysis tools and extracted datasets
about all ecosystems for reproducibility and future research. These
and more details are available in our online Appendix [14].

Our work represents the exploratory phase in the long-term
process of theory building. We discover phenomena and develop
hypotheses based on empirical evidence, widening our under-
standing of variability mechanisms from product lines to ecosys-
tems. We hypothesize that if we understand the causalities of
using a mechanism, we will be (i) able to predict how it sustains
success and growth of an ecosystem, and eventually (ii) guide
development and management. Our findings also generate require-
ments for tools, and our datasets can serve as realistic benchmarks.
We proceed with background information Section 2. We detail
our study design in Section 3. We introduce our conceptual frame-
work in Section 4, followed by instantiations of the framework
with qualitative and quantitative empirical data in Sections 5–7.
Thereafter, we synthesize results of our cross-case analysis and
develop hypotheses in Section 8. Finally, we discuss threats to
validity in Section 9, related work in Section 10, and conclude in
Section 11.
2. Background

Software ecosystems is an emergent field of research that has
been addressed from various perspectives. So far, researchers have
not agreed on a common definition from the perspective of tech-
nology. Yet, ecosystems are often considered as technical con-
structs [15,16], arguably with fluid boundaries to related
paradigms, such as distributed systems or componentware [17].
We take the view of ecosystems being extensions of product lines
of substantial size [4,12,18,19]. We consider the following two
characteristics of an ecosystem, as defined by Hanssen [20], as cen-
tral to our study: (i) a network of organizations, and (ii) a common
interest in central software technology.

We focus on ecosystems that rely on a common technological
platform, in contrast to those that are purely social, strategic, or
economic constructs of loosely related software assets or projects.
A platform provides the basis for mass-customization. It allows
consumers to derive an individual instance, such as a phone
(Android) or an IDE (Eclipse), using an automated, tool-supported
process. An instance is derived from a universe of compositional
assets—the ecosystem.

2.1. Architectural openness

Ecosystem platforms have different degrees of openness [9]. We
define openness as the extent of technical support for consumers
to freely use assets from an ecosystem in their instances—that is,
their product instances or installations. Openness ranges between
two extremes: closed (no support) to open (full support). In both
cases, users can use assets from the ecosystem; however, in closed
platforms, these must be integrated into the platform first. In other
words, openness ‘‘is the degree to which a platform supplier allows
[and supports] the platform users to interact with the platform,
view, extend or change its components’’ [9].

Openness is a core distinguishing characteristic of our subjects.
As we will see, eCos and the Linux kernel can be classified as
predominantly closed. Their focus is on managing variability by
carefully controlling contributions to the platform and by avoiding
complexity through unnecessary variability. Still, eCos and the
Linux kernel have a free market of third-party solutions, but their
use requires highly technical skills from users. In contrast, Debian,
Eclipse, and Android focus on encouraging variability. They are
open by design and offer convenient facilities for users to easily
extend their instances with free market assets.

Consequently, our study carefully considers the openness of the
studied subjects and investigates the technical differences between
the closed and open platforms.

2.2. Variability mechanisms

A variability mechanism is an implementation technique to
delay design decisions about functionalities and qualities of a
software system [21,10]. To flexibly adapt software to user
requirements at later stages—such as build-, startup- or run-time—
variation points are introduced into a software platform, using an
architecture that supports variability. Variability mechanisms are



Fig. 2. Excerpt of the manifest of the Debian gawk package.
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used to implement variation points, which are locations in assets
where variability occurs. Variation points are bound with concrete
variants, which are either known (closed platform) or unknown
(open platform) during platform development.

A range of static and dynamic variability mechanisms exists. In
static configuration, all variation points are bound at build-time.
The whole configuration of the system has to be decided before
and cannot be changed at run-time. A common static mechanism
is conditional compilation [10,22], which is often realized with a
build system that selectively compiles source files, and with a pre-
processor (such as the C preprocessor) that cuts out irrelevant
parts of the source file before compilation. In dynamic mecha-
nisms, variation points are bound much later, and can usually be
changed at run-time. Commonly, configuration parameters are
loaded at startup and influence the run-time of the system. Thus,
dynamic configuration trades static optimization of systems (e.g.,
memory footprint) for flexibility. Further mechanisms comprise
code generators (static) and component-oriented architectures (usually
dynamic), which load components according to a specific configura-
tion. Even more dynamic are service-oriented systems, where compo-
nents offer services for interaction. Loading and configuring such
components and their interactions is usually fully dynamic.

To handle large numbers of variation points, product lines
commonly use variability models, such as feature [23] or decision
models [24]. Variability models abstractly describe and organize
the variabilities at a central place, and are input to configurator
tools, which help users resolving variabilities [25]. Consequently,
we classify the techniques for variability models as variability
mechanisms, too.

In addition to variability models, another approach is used in our
ecosystems to represent variability information: manifests. To set
the stage for our analysis, we briefly introduce these two ways of
describing variability.

Fig. 1 shows a feature model—a popular variability modeling
language and notation. Our example describes the variability of
the Journalling Flash File System supported in eCos and the Linux ker-
nel. Feature models express the commonality and variability of a
product line as features organized in a hierarchy. Constraints
restrict their valid combinations and values. In our example, the
feature Debug Level is mandatory (solid circle), whereas the ability
to Compress Data is optional (hollow circle). Default Compression is a
feature group that allows selecting exactly one child feature. Addi-
tional constraints are listed to the right. In contrast to a variability
model, which describes the whole variability of a system centrally,
manifest files can be used when variability should be described in a
distributed way. A manifest file declaratively describes metadata
and variability information (e.g., dependencies) of one asset, and
is packaged and maintained together with it. Similar to variability
models which are declared in a formal language, manifest files
adhere to a schema, which can be a grammar for textual manifests,
or an XML Schema for XML-based manifests. Fig. 2 shows the
Fig. 1. Feature model exam
excerpt of a (textual) Debian manifest of the GNU/awk interpreter
package. It contains naming (l.1), versioning (l.2), dependency
(l.4–5), and categorization (l.6–7) information. These are the
typical contents of a manifest file; however, more complex
descriptions of components (as in Android manifests) also occur.

Variability models and manifests are two core variability mech-
anisms found in our five subjects. In our study, we identify further
mechanisms and their characteristics, and explore the relationship
to their organizational context.

2.3. Dependencies

Interactions between assets introduce dependencies that are
declared in variability models (eCos, Linux kernel) or manifests
(Debian, Eclipse), or are hidden in code (Android). They are core
characteristics of variability mechanisms. They complicate devel-
opment and maintenance, but also challenge tools. We study
dependencies to learn how our subjects cope with this complexity.
We analyze how dependencies are expressed and what depen-
dency structures exist that tools and consumers have to manage.
Specifically, analyzing Android helps to understand how one of
the largest and fastest-growing ecosystems tackles complexity.
3. Methodology

We perform case study research [26–28] with five cases—our
subject ecosystems. The goal is to discover real-world phenomena
and generate hypotheses from empirical evidence, which is the
exploratory phase of theory building [26]. Generating hypotheses
by analysis of case studies is a highly qualitative and interpretive
process. These hypotheses need to be refuted or confirmed using
other methods, such as experiments and simulations, and
confronted with further data, which is future work.

3.1. Case study selection

Our selection of subjects strives for broad applicability of the
resulting conceptual framework. We chose five successful ecosys-
tems spanning diverse domains and approaching variability in
different ways. They range from systems with central variability
ple (adapted from [2]).
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models and static configuration using conditional compilation,
through component-oriented architectures specifying variability
in separate manifest files associated with assets, to highly dynamic
service-oriented systems with dynamic configuration of assets at
run-time. Since our subjects and most of their assets are open
source, we can study significant subsets of their ecosystem.

Each of our subjects is an ecosystem on its own, although
overlaps and interactions among them exist. Each subject spans a
universe of assets that is conceived or managed as an ecosystem,
with individual organizational structures and communities. For
instance, the Debian ecosystem consists of software packages
managed by the Debian community, even though it also contains
packages of Eclipse and the Linux kernel. Since the latter have their
own ecosystems with dedicated communities, we clearly distin-
guish among them.

3.2. Qualitative analysis

The major part of our analysis is qualitative. It focuses on iden-
tifying mechanisms and organizational structures in the studied
ecosystems and relationships among them.

We followed recommended practices of case study research
[28]. We first performed within-case analyses, by creating in-depth
write-ups of each ecosystem. These write-ups are part of our
online Appendix [14] (c.f., Section 3.4). During analysis, we itera-
tively built a conceptual framework of the variability mechanisms
and organizational structures. The framework is instrumental to
compare our subjects and to unify ecosystem-specific aspects
using a common terminology. The framework is summarized in
Fig. 3 and in the concept hierarchy shown in the left-most column
in Tables 1–4. We seeded the framework with characteristics of
mechanisms known from SPLE and then expanded to those specific
to ecosystems. Many are inspired from literature, such as Berger
et al. [2] (variability models, dependencies), Czarnecki and Eise-
necker [29] (binding time/mode, openness), and Szyperski [17]
(interaction, encapsulation); others were added as discovered.

Thereafter, we performed a cross-case analysis to identify
the major differences across our subjects. Finally, we developed
Fig. 3. Illustration of the c
testable hypotheses to explain the observed phenomena and
differences.

Our sources are referenced as we use them in the text. In the
qualitative analysis, we relied on official documents, such as the
Debian Policy [30] and the Eclipse Development Process descrip-
tion [31]. We also examined tools and languages used in the
ecosystems.

3.3. Quantitative analysis

Quantitative analyses allow us to ask questions about occur-
rence and frequency of identified mechanisms. It is instrumental
to identify potential correlations between qualitative concepts
and quantitative measures, such as growth rate of an ecosystem
or dependency structures.

For the quantitative analysis, we used statically extracted data.
Since analyzing whole ecosystems is infeasible given their open
and uncontrolled nature, we mined substantial subsets from the
most vibrant parts—the respective major distribution sources of
the ecosystems. For eCos, we analyzed all i386-specific and hard-
ware-independent packages from the repository (v. 3.0). For Linux,
we studied the x86 architecture from the 2.6.32 codebase. Debian’s
subset are all binary i386 packages from the main component of
the 6.0 distribution. For Eclipse, we analyzed the Helios 3.6 model-
ing distribution together with bundles from the associated reposi-
tory. For Android, we gathered nearly all available free apps from
Google Play over a period of 14 months in 2011 and 2012. The
exact sizes of our analyzed ecosystem subsets are listed in Table 5
(first row).

We developed analysis tools for each ecosystem. For eCos and
Linux, we reused and extended our previously developed infra-
structure [2]. For Debian, we analyzed the package indices that
are intended to be used with the native Debian package manager,
and parsed manifests with a software package (python-apt) com-
monly used for that purpose. For Eclipse, we installed all bundles
in a running system and used the platform API to query informa-
tion. Analyzing Android was by far the most challenging, since
dependencies are not explicitly declared. We implemented static
onceptual framework.



Table 1
Ecosystem domains and organization.

eCos Linux kernel Debian Eclipse Android

Domain
Software domain Embedded OS General-purpose OS kernel OS & application software Software development tools OS & applications for mobile

devices
Consumer skills Highly

technical
Highly technical Technical and non-

technical
Technical Non-technical

Organization
Main platform Free eCos

edition
Mainline kernel Debian Archive (‘main’

section)
Yearly official platform release Android OS and Google Apps

Development Centralized Distributed Distributed Distributed Distributed
Variability mgmt. Centralized Centralized Distributed Distributed Centralized
Contribution filtering Strong

filtering
Strong filtering Little filtering Strong filtering Strong filtering

Free market Packages Kernel modules (drivers),
patches

Mostly commercial
packages

Bundles on update sites/market
places

Apps on market places

Distribution channel None None Marginal third-party
repos.

Eclipse marketplace Google play store

Role of contributions Marginal Complementary Complementary Complementary Essential

Table 2
Estimated scales and growth rates.

eCos Linux Debian Eclipse Android

Main platform scaleg

Basic units 3948a 25,861a 28,232b 5787c 83d

Features 2859 10,415 N/A N/A N/A
LOC 0.9M 7.9M 762M 21.2M 1M

Free market scaleg

Basic Units >1530a – >15,179b >1897c >651Kd

Features >315 – N/A N/A N/A
LOC >279K – >410M >6.9M >1G

Growth ratesg

Inception year 1999(v1.1) 1991(v0.01) 1996(v1.1) 2001(v1.0) 2008
Inception LOC 76k 10k 13M 141k 1.128Me

Current LOCf 1.2M 7.9M 1.2G 28.1M 1G
Growth per year (%) 32 39 35 80 353

N/ANot applicable.
–Data not available.
LOCLines of code.

a Files.
b Packages.
c Bundles.
d Apps.
e Android OS and apps.
f Of considered version.
g As of 03/2012.
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analysis techniques for identifying Intent calls and their parame-
ters from Android (Dalvik) bytecode.

3.4. Reproducibility

For further research, and for reproducibility of our study, we
provide an online Appendix in a repository [14]. It contains the
detailed within-case write-ups for each subject, our developed
analysis tools, and datasets. Further statistics, diagrams, and
details about all estimations (e.g., scale and growth rate of ecosys-
tems) are available in Appendix B of [32], including details on the
Android bytecode analysis.

4. Conceptual framework

We describe our conceptual framework in this section, and later
use it to characterize and compare the five ecosystems. In the
description, general framework concepts are typeset in sans-serif,
and ecosystem-specific instantiations in cursive. Fig. 3 illustrates
core parts of the framework.
A software ecosystem is a universe of shared assets centered
around a common technical platform. In this universe, various roles,
mainly suppliers and consumers, interact in order to develop, man-
age, and consume assets. More roles exist, but modeling them is
out of our scope. A platform denotes the technical aspects of an eco-

system: a variability-enabled architecture, a set of shared core
assets, tools, frameworks, and patterns, together with organiza-
tional and process-related concerns. Every vital ecosystem has a
controlled central part, the main platform, which is managed by
the platform supplier. Free market is the less-controlled, complemen-
tary part of the ecosystem that provides third-party assets extend-
ing the main platform. Alternative platforms may exist as
derivatives of the main platform for specific needs. For example,
Ubuntu is a Debian derivative derived from the Debian main plat-

form for desktop and laptop users. Since derivatives do not belong
to the free market, we decided to ignore them in this study.

Assets are any artifacts, such as source code, binaries, media files,
or documentation. Each of the studied platforms packages assets into
basic units, such as Debian packages or Eclipse bundles. Composite units,
such as Debian meta packages, aggregate sets of basic units.



Table 3
Variability mechanisms.

eCos Linux kernel Debian Eclipse Android

Variability representation
Asset base

Basic units Files Files, kernel modules Packages Bundles Apps
Composite units Packages N/A Meta packages Features N/A
Unit parameters Preproc. symbols Preproc. symbols Debconf options properties/preferences Preferences

Variability model Feature-model-like Feature-model-like N/A N/A
Features Packages, components,

options, interfaces
Configs, choices,
menuconfigs, menus

N/A N/A N/A

Language CDL Kconfig N/A N/A N/A
Manifest (Schema) N/A N/A y (textual DSL) y (OSGI manifest) y (XML-based DSL)
Grouping and categorization Variability model Variability model Tasks, sections, debtags Market place categories App store categories

Decisions
Decision lifecycle Derivation Derivation, re-config. Re-configuration Re-configuration Re-configuration
Decision binding Static Static & dynamic Dynamic Dynamic Dynamic
Derivation/re-config. tools Configurator

(ConfigTool), build
system

Configurator (Kconfig),
build system (Kbuild)

Installers (apt, dpkg) Installer, market place
client (P2)

Installer app (e.g.,
Market)

Encapsulation
Interface mechanisms C header files C header files Package-specific Java interfaces and

OSGI manifest
Explicit public
components, predef.
data formats

Interface specification Documented interfaces
for components, e.g.,
drivers

Documented interfaces
for components, e.g.,
drivers

Package-specific,
documented policies for
some domains

Explicit public
interfaces defined by
OSGI manifest

Explicit public
components, predef.
data formats

Interactions
Managed by run-time system N/A N/A N/A Equinox OSGI Dalvik VM
Interaction mechanisms Static linking Static & dynamic

linking
dpkg-triggers,
documented policies

Class reference,
services, extension
points

Intent mechanism

Interaction binding Early static Early static & dynamic Not specified Late static & dynamic Late dynamic

Platform openness Predominantly closed Predominantly closed Open Open Open

N/ANot applicable.

Table 4
Dependencies.

eCos Linux kernel Debian Eclipse Android

Dependencies
Direct dependency

Target Features Features Basic units Basic units Basic
units

Types (hard/soft) Hierarchy, requires,
active_if, default, calculated

Selects, prompt
condition, default

Depends, pre-depends, recommends,
breaks, con- flicts, suggests, enhances

Require-bundle Explicit
intent

Capability-based dependency
Target CDL interfaces N/A Virtual packages Java packages, services Intent

filters
Types Same as direct dep. N/A Same as direct dep. Import-Package, dyna- mic

service lookup
Implicit
intent

Common vocabulary N/A N/A N/A Via API Via API
Provide capabilities Implements N/A Provides Export-Package Via

intent
filter

Expressiveness Any Boolean; arithmetic &
string operations

Any Boolean;
number/string
equality

Any Boolean; version comparison Conjunction & implication;
version comparison

N/A

N/ANot applicable.
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Variability in the platforms has two forms: basic units can be
optional, or vary inside, or both. Unit parameters, such as properties
in Eclipse, describe variability within basic units.

An instance (e.g. a customized Linux kernel or a particular instal-
lation of an Android system) is a concrete system derived from the
main platform and the free market by making decisions—more pre-
cisely, by selecting and configuring assets, thus, resolving variabil-
ity. Usually, an instance can be re-configured later.

Variability information (dependencies and unit parameters) is spec-
ified either within a variability model or in distributed manifests. Var-
iability models are system-wide and integrated abstractions over
the concrete assets and declare features and dependencies using a
dedicated language [2]. Features are abstract entities that are
mapped to units and unit parameters. Instead of making decisions
directly on the assets, derivation is based on deciding features.
Manifests directly reflect variability information of the assets, with-
out the ability to introduce abstractions. Such abstraction is only
partially possible by using empty assets whose manifests
aggregate dependencies, like Debian virtual packages.

Each ecosystem supports derivation and re-configuration by auto-
mated tools: configurators for the variability model-based platforms
(eCos, Linux) and installers for manifest-based platforms (Debian,
Eclipse, Android). Such automated tools assist consumers with
intelligent choice propagation, conflict resolution, and optimization



Table 5
Dependency statistics.

eCos Linux Debian Eclipse Android

Ecosystem subset
Basic units 1023a 10,326a 2814b 28,232c 2105d 281,079e

Features 1244 6308 N/A N/A N/A
LOC 302K 4.3M 782M 7.8M 433M
LOC per basic unitf 295 416 27,699 3705 1539

Basic units/features
With dependencies (%) 99 100 96 89 69
Direct r (%) 99 100 95 81 14
To capability t (%) 8 – 24 27 68
With depending units s (%) 42 31 62 57 –
Providing capability v (%) 10 – 13 80 100

Dependencies r t

# Per basic unit/featureg 1 2 4 6 1

Capabilities
With depending units u (%) 44 – 54 11 –

sNumbers refer to metamodel (Fig. 4).
N/ANot applicable.
–Data not available (limitation of analysis).

a Files.
b Loadable modules.
c Packages.
d Bundles.
e Apps.
f Average.
g Median.
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based on the dependencies. The latter are declared either among
features within the variability model, or among basic or composite units

within manifests.

5. Context of mechanisms

Our ecosystems span fairly different domains, organizational
structures, and achieved different scales over time. We discuss
these aspects to put the variability mechanisms into context.
Tables 1 and 2 summarize our observations.

5.1. Platform domain and target audience

eCos is a free real-time OS for deeply embedded applications—a
domain that requires high portability, low memory usage, and
small binary images. With a market share of 5–6%, it powers,
among others, multimedia, networking and automotive devices
[33]. Consumers of eCos are highly specialized developers of
embedded systems. eCos maintains advanced tools, such as a
configurator with a reasoning engine.

The Linux kernel is a free general OS kernel targeting a much
broader range of hardware than eCos. Its consumers include Linux
distributors, who customize and release specialized kernels, and
technically skilled end users, who sometimes also configure, com-
pile, and install a custom kernel. The Linux kernel also provides a
configurator, but much less advanced [2] than the one of eCos.

Debian is a complete OS with a large selection of applications. It
is available for many hardware architectures, ranging from embed-
ded systems to high performance computers. Its consumers are
both non-technical end users and system administrators with deep
expertise. Debian provides suitable installers and configurators for
beginners and experts. We chose Debian as it is one of the most
popular, established, and accessible Linux distributions [34].

The Eclipse IDE is a foundation for highly customizable devel-
opment tools.1 Eclipse was explicitly conceived as an ecosystem
1 Eclipse also provides the Rich Client Platform for building arbitrary GUI software,
but we focus on the IDE ecosystem.
[35] and advertised as such by the Eclipse Foundation [36]. Although
users of the Eclipse IDE are technically skilled developers, extending
the system is supported by a convenient installer.

Android is a free OS for mobile devices, including smartphones,
tablets, and netbooks, which can be extended with third party
apps. The target consumers of Android are non-technical end users,
deriving their system by installing apps with a user-friendly
installer.
5.2. Organization

We identified the following organizational structures of devel-
opment and variability management (see Table 1).

eCos’ main platform is its free edition, maintained and devel-
oped by the main supplier eCosCentric and external contributors
[37]. Both development and variability management are centralized
in the main platform. We have not found reliable information about
the process used for contributions (eCos packages and patches).
However, the main platform is controlled by a group of currently
ten maintainers, which indicates that contributions have to pass
their reviews. Only a marginal free market emerged on the fringe
of the main platform, although eCos’ packaging mechanism and
its modular variability language were designed to encourage contri-
butions. No uniform distribution channel exists for the free market.

Linux’ main platform is the mainline kernel. The variability
management is centralized, with only a few maintainers controlling
the variability model [38]. In contrast, the development is highly
distributed, comprising thousands of developers and maintainers.
However, contributions (patches, usually with new features) have
to pass thorough reviews through the maintainer hierarchy.
Although no uniform distribution channel (beyond mailing lists,
such as the official Linux Kernel Mailing List) outside the main
platform exists, an unorganized free market with third-party mod-
ules (mostly drivers) emerged.

Debian’s main platform is the central repository containing the
official distribution. Both development and variability manage-
ment are distributed, comprising over thousand package maintain-
ers, who maintain packages that are sourced from free and open
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source software [39]. The main platform tries to be as inclusive as
possible, with little restrictions to contributions (Debian packages),
while reviews still assure quality [30]. A free market with mostly
commercial and non-free packages in scattered third-party repos-
itories complements the main platform.

Eclipse’s main platform is represented by the yearly releases of
the IDE. It consists of independently managed projects following
the Eclipse Development Process [31] and is controlled by its sup-
plier, the Eclipse Foundation. Contributions (new projects) undergo
thorough reviews. Both the development and variability manage-
ment is distributed in the main platform. Eclipse has a complemen-
tary free market, mainly represented by the Eclipse Marketplace
[40] and further repositories, such as Yoxos [41] and smaller
update sites for Eclipse’s installer.

Android’s main platform comprises the OS and pre-installed
apps. While the development is distributed, the variability manage-
ment of the main platform is centralized and fully controlled by
Android’s supplier, the Google-led Open Handset Alliance. Individ-
ual sub-projects exist, each having a project lead (typically a Goo-
gle employee [42]). Contributions (patches, possibly also apps) to
the main platform are possible, but with thorough reviews. A free
market is an essential goal of Android. The main distribution chan-
nel (Google Play store) is widely open for third-party contributions
of arbitrary applications.

5.3. Scale and growth

We conservatively estimated main platform and free market
sizes (see Table 2). We chose LOC as our primary measure to
account for the different granularities of assets in the ecosystems.
LOC is also known to be highly correlated with complexity, devel-
opment, and maintenance effort [43].

eCos has the smallest main platform, comprising only 502 pack-
ages and a marginal free market. Linux is much larger, given its
support of a much wider variety of hardware. We could not esti-
mate the possibly large, but unorganized free market. Debian has
the most inclusive and largest main platform in our study. It is rel-
atively easy to contribute new packages. As a result, the free mar-
ket [44] is comparatively small, half the size of the main platform.
Eclipse’s main platform and free market are both of medium size,
compared to the others. The main platform (Helios 3.6) is three
times larger than the two main free market repositories [40,41].
However, the whole free market may be significantly larger, as
the ecosystem is heavily scattered with smaller update sites.
Android has a free market that is over 1000 times larger than
the main platform [45]. The main platform, which is relatively
closed and strongly filters outside contributions, is very small with
83 apps (Android 2.3.4).

Finally, we estimated yearly growth rates of our subjects by fit-
ting an exponential growth function to the size difference between
initial release and current state. As shown in Table 2, Eclipse and
Android, which strategically foster a free market, grew consider-
ably faster than the others, which focus on the main platform.

6. Variability mechanisms

In our study, we identified and characterized variability mech-
anisms both from a technical (how instances vary) and a consumer
perspective (how and when consumers make decisions). Table 3
summarizes our observations.

6.1. Variability representation

6.1.1. Asset base
In eCos, basic units are source files with internal variability con-

trolled by preprocessor symbols (unit parameters) and realized via
#ifdef statements. Composite units are packages, which are aggre-
gations of source files, test cases, or other resources, together with
a variability model of the package. eCos’ configurator aggregates
partial models into a single whole, depending on the set of loaded
packages. A feature-to-code mapping (declared in the model) con-
nects features with implementation assets; it is used to derive a
concrete instance. Linux has two types of basic units: (i) source
files with preprocessor symbols (unit parameters) as in eCos, and
(ii) loadable kernel modules that extend Linux at run-time. No con-
cept for composite units exists. The feature-to-code mapping
resides in the build system [46,47]. Debian’s basic units are pack-
ages—file archives with helper scripts and a manifest. Composite
units are realized by meta packages, whose purpose is to aggregate
other packages via dependencies. The tool debconf realizes unit
parameters and is used by scripts to configure the packaged
software. It prompts users to make configuration choices during
package installation. Eclipse’s basic units are OSGI bundles—
dynamically loadable modules tying together artifacts such as Java
classes, images, configuration files, and metadata. Bundles run in a
virtual machine. Unit parameters are provided by several mecha-
nisms, including the preference store and configuration admin
service. Composite units called ‘‘features’’ aggregate multiple bun-
dles with branding and update information. Android is composed
of apps—individual application programs representing basic units.
Most apps run in a virtual machine (Dalvik). All apps are treated
equally by the virtual machine, which allows alternative imple-
mentations even for pre-installed (main platform) apps. Android
has no concept of composite units, but has a dedicated mechanism
for unit parameters (preferences). Android offers API support to
create a unified user interface for app preferences, and to store
and load them.

6.1.2. Variability model
eCos and the Linux kernel come with feature-model-like

variability models declared in their respective languages CDL and
Kconfig. Interestingly, while Kconfig has no modularization
support beyond a simple file include statement (source), CDL was
designed to encourage contributions and allows a modularized
specification of models, distributed over individual eCos packages.

6.1.3. Manifest
Debian, Eclipse, and Android have no variability model. Vari-

ability information is declared in a text- or XML-based manifest file
inside a packaged basic unit, and maintained together with it.

For further details on the modeling languages and manifests, we
refer to documents [2,48,49] (eCos and Linux kernel) [50] (Debian),
[51] (Eclipse), and [52] (Android), in addition to our within-case
write-ups (c.f., Section 3.4).

6.1.4. Grouping and categorization
To be usable by consumers, units and features need to be orga-

nized in some form. eCos and Linux organize features hierarchi-
cally in variability models [2], whereas units are organized in
diverse, often informal, ways in the other systems. Variability
models use the hierarchy to group and categorize features.
Abstract features, which are not mapped to code, improve the
structure, but can also be used to optimize dependencies [53]. In
the other subjects, public repositories, such as the Eclipse Market-
place [40] and Google Play [54], have their own categorization sys-
tems. Debian also offers community-driven categorizations using
Debtags [55].

6.2. Decisions

The most distinguishing characteristics of decisions we identi-
fied are their lifecycle, binding, and tool support.
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6.2.1. Decision lifecycle
The decision lifecycle characterizes when and how end users

decide the presence or absence of units—whether they derive an
instance from scratch, or only re-configure one. In eCos and Linux,
users derive an instance. In the others, users normally re-configure
an initial instance provided by the supplier. Eclipse comes in one of
eleven pre-instantiated editions. An Android instance is delivered
with the mobile device. A Debian user usually installs a minimal
system before it can be re-configured by installing and removing
packages.
6.2.2. Decision binding
Decisions can have different binding mode and binding time.

Binding mode characterizes whether a decision can be changed.
For eCos and Linux, it is static, since these systems require to re-
derive the instance for changes. However, Linux also allows late
dynamic decision binding by means of loadable kernel modules.
Debian, Eclipse, and Android are dynamic as they allow basic units
or composite units to be installed and removed at run-time.
6.2.3. Tools
Our closed platforms, which are mostly statically configured,

provide configurators to support the derivation process. Our open
platforms include an installer that allows end users to extend their
instance. Both configurators and installers, except the one of
Android, offer choice propagation support and reasoners to resolve
dependencies between features or basic units. Android’s installer
does not enforce dependencies statically. Instead, apps have to
handle unsatisfied dependencies at run-time.
6.3. Encapsulation

Our closed platforms offer no encapsulation concepts beyond
C header files; only implementation guidelines for interfaces of
loadable kernel modules exist in Linux. In Debian, interfaces are
solely package-specific; however, Debian has policies for some
domains, such as Java libraries or Emacs extensions. Eclipse encap-
sulates all classes and resources in the bundle; public functionality
(Java packages, OSGi service interfaces, extension points) must be
declared in the manifest. Android apps can provide public compo-
nents that are described and advertised to other apps with intent
filters (explained shortly in Section 7.1).
6.4. Interactions

Interactions among basic units require identifying and binding
the concrete target. We identified the following interaction binding
mechanisms.

eCos and Linux use static interaction binding: all selected basic
units are linked into a single binary image. Linux also supports late
dynamic interaction binding through kernel modules. In Debian,
interaction binding is mostly package-specific, however, several
policy documents prescribe guidelines for interaction in some
domains. In contrast, the open platforms Eclipse and Android both
provide a virtual machine that has full control over interactions.
Eclipse offers three facilities: direct class referencing, extension
points, and services. Except for services (using the Service Activa-
tion Toolkit or declarative services), interaction targets are bound
late but statically—due to Java classloader restrictions. Android
provides a purely dynamic facility for interaction with its intent
mechanism. The interaction target—specified by parameters of an
intent—is continuously reevaluated at run-time and could easily
change when apps are exchanged or reinstalled.
6.5. Openness

Our analysis of mechanisms so far allows us to detail our char-
acterization of the subjects’ openness. We can see that openness is
primarily reflected in the decision lifecycles (derivation and recon-
figuration) and tools. We classify the platforms of the Linux kernel
and of eCos only as predominantly closed. In the Linux kernel, addi-
tions need to be applied to the source tree, for example, as git
branches or patch sets. This ‘‘out-of-tree’’ development is actively
discouraged [56], and deriving such an instance is not supported
by the configurator. Exceptions are loadable kernel modules from
commercial vendors, and kernel derivatives offered by official
Linux distributions. In eCos, although openness was a primary goal
of its packaging mechanism, adding third-party functionality to an
instance still requires programming effort. The variability mecha-
nisms of Debian, Eclipse, and Android are intentionally open, with
installer tools supporting free markets of assets.
7. Dependencies

In our study, we identified the following mechanisms to express
dependencies in the platforms, and the resulting dependency
structures in the ecosystems.
7.1. Specification, semantics & expressiveness

Our ecosystems approach specifying dependencies in diverse
ways. Table 4 summarizes the core characteristics. We now discuss
the declaration of dependencies, their target (units, features, or
capabilities), their semantics (modality), and the corresponding
constraint languages.

eCos and Linux declare dependencies among features in their
variability models. Due to their high level of abstraction, variability
models allow flexible specification of intricate dependency struc-
tures. This flexibility comes at the cost of maintaining additional
artifacts—variability model [57] and feature-to-code mapping
[46], which need to be coordinated. Debian’s and Eclipse’s specifi-
cation of dependencies among basic units in manifests is more
direct, but less flexible. Android approaches the problem entirely
dynamically. No static specifications of dependencies among apps
are used. Apps can only declare to be open for interaction by
setting a flag, or defining an intent filter, stating that the app can
handle specific service requests.

We identified a special class of dependencies in each ecosys-
tem: dependencies on capabilities, as opposed to direct dependen-
cies. Capabilities are abstractions over functionality provided by
one or more units or features. For example, the capability to open
URLs of a specific format (starting with ‘‘http://’’) is provided by
multiple web browsers. All platforms except the Linux kernel
provide explicit capability constructs. As can be seen in Table 4,
capabilities are features in eCos and the Linux kernel, labels in
Debian (such as in l.5 of Fig. 2), and mainly labels in Eclipse (with
the exception of rarely used services). Android provides the richest
specification via intent filter.

Intent filter can be characterized as follows. They form a simple
Domain-Specific Language (DSL) or an ontology, which can be used
by contributors to increase reuse. The main elements of an intent
filter are action keys, category keys, and data specifications (in a
URI format [58]). To interact with functionality described by an
intent filter, apps throw an implicit intent by instantiating an
Intent object parameterized with an action key, category key,
and a data field (URI). The intent is matched against intent filters
of installed apps, which generally succeeds when an intent’s
parameters are a subset of the information specific in an intent fil-
ter. Thus, intents can be seen as a minimal, and intent filters as a
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maximal specification of functionality. A core aspect of the intent
mechanism is its vocabulary. Action and category keys are pro-
vided by the Android API, but every app can introduce their own.
Such third-party vocabulary needs to be documented and pub-
lished for other apps to use functionality described by the vocabu-
lary. Interestingly, the Android community has launched
repositories with additional vocabularies, such as OpenIntents
[59].

To abstract the dependency types we found in the languages,
we created a metamodel that details the roles that units,
features, and capabilities can play in dependencies. It is shown
in Fig. 4. A unit or a feature can directly depend on other units
or features (r), or it can depend on capabilities (t). The meta-
model also captures the reverse directions of these two depen-
dency types (s and u). The relationship that capabilities are
provided by basic units or features (v), and its reverse (w),
are likewise captured.

We also classified the dependencies by their semantics (modal-
ity). Hard dependencies must always be satisfied. Soft dependen-
cies represent suggestions or defaults. We even observed
conditionally hard or soft dependencies (defaults in Kconfig)
that assume a different modality depending on a side condition.
Table 4 (rows ‘‘Types’’) shows the keywords in the variability
languages/schemas declaring a certain type of dependency.
Notably, Debian provides the richest set of modalities, mainly to
drive its sophisticated package update, replacement, and removal
processes.

The constraint languages for declaring dependencies differ in
expressiveness. eCos’ CDL supports most operators of a modern
programming language [2]. Kconfig supports any Boolean depen-
dencies and equality on strings and numbers. Notably, it uses
three-state logic for dealing with loadable kernel modules [2].
Debian supports any Boolean dependencies among packages and
comparisons on version ranges. Exclusions are specified via the
modalities conflicts and breaks, and defaults via recommends.
Eclipse supports implications, conjunctions, and version compari-
sons, but lacks negations and disjunctions. It is not easily possible
to exclude bundles or declare alternatives.
7.2. Dependency structures

We now quantitatively analyze the occurrence of the identified
types of dependencies in substantial subsets of the ecosystems. To
study dependency structures, we computed cardinalities for all
association ends in our dependency metamodel shown in Fig. 4.
Table 5 shows detailed numbers. We cannot give reliable numbers
on capability-based dependencies for Kconfig, since the language
lacks a concept for capabilities. For Android, due to limitations of
our analysis (c.f., Section 9.2), we cannot reliably calculate the
reverse directions (s and u) of dependencies. In the following,
we discuss the connectivity (the extent to which units or features
are connected) and the density (to how many others units or fea-
tures are connected) of an abstracted dependency graph.
Fig. 4. Dependenc
7.2.1. Connectivity
The connectivity of the dependency graph indicates the propor-

tion of units and features for which dependency information has to
be maintained. The number of units or features having direct (r in
Fig. 4) and capability-based (t) dependencies is surprisingly high,
regardless of platform openness and existence of variability mod-
els. The highest is observed in Linux, where almost all features ref-
erence others, and in eCos, where it reaches 99%. These numbers
are high, partly because every non-root feature implies its parent
in the model hierarchy. Still, many features (30% in eCos, 85% in
Linux) declare cross-hierarchy dependencies. These are known to
critically influence hardness of reasoning both for configuration
tools [60] and for users, by introducing intricate implications of
choices. Finally, in the open systems, most basic units also partic-
ipate in many dependencies: Debian has the highest amount with
96%, followed by Eclipse with 89%, and Android with 69%. In sum-
mary, across all systems, tools supporting variability, including
configuration, derivation, and analysis, must handle large numbers
of dependencies.

7.2.2. Density
The density of the dependency graph indicates how much

dependency information needs to be maintained per unit or fea-
ture. To assess it, we considered the number of dependencies of
unit/features and of capabilities—that is, cardinalities of all associ-
ation ends in the metamodel. We now discuss these numbers in
general, and at the end provide a separate discussion on the extent
of capability-based dependencies.

7.2.2.1. Overall density. We first considered the number of depen-
dencies per unit or feature in the forward direction (r and t).
Fig. 5 shows the distribution of these numbers across our
subjects. Surprisingly, except Android, the open platforms have
in average more dependencies per unit than the others per fea-
ture. However, we also find many outliers, such as an Android
app with 96 dependencies, a Debian package with 323 depen-
dencies, and an Eclipse bundle with 419 dependencies. Some
Debian outliers have many soft dependencies (modalities like
suggests and recommends), indicating their importance for pack-
age installation and update processes. Still, this only happens
for outliers; the majority of dependencies is hard in Debian.
Finally, while many Eclipse outliers, such as the one with 419
dependencies, are caused by many Java package imports (capa-
bility-based dependencies), most dependencies are direct ones
on bundles.

We also investigated the reverse direction of dependencies (s
and u in Fig. 4). If units have many, they are particularly hard to
evolve, since dependencies on them are not specified directly
together with the unit, but are scattered over the whole ecosystem.
A developer has to know all depending units and carefully evolve
it. Evolution of such units can break dependencies easily. We
obtained numbers for all systems except Android, given our analy-
sis limitations. We find that the open ecosystems have higher
proportions of units being referenced (Debian: 62%, Eclipse: 57%)
y metamodel.
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than the others for features (eCos: 42%, Linux: 31%). We further
notice that in Debian, 44% of packages depend on one single
package, libc6, and in Eclipse, 58% of bundles depend on
org.eclipse.core.runtime. In the other subjects, we could not
observe such an outstanding central unit or feature (maximums
are 4% and 8% of features depending on a specific feature in eCos
and Linux kernel).
7.2.2.2. Capability-based dependencies. All ecosystems use capabil-
ity-based dependencies. Interestingly, as can be see in Table 5,
the percentage of units or features with direct dependencies drops
significantly from eCos with 99% to Android with only 14%. The
opposite is observed for capability-based dependencies, which rise
from 8% in eCos to 68% in Android. Recall that we have no numbers
for the Linux kernel, since the Kconfig language has no explicit
capability construct. However, we found that some features in
the Linux model play this role, using the convention to prefix them
with HAVE_ (e.g., HAVE_IDE).
8. Phenomena and hypotheses

Having analyzed our subjects in-depth, we now summarize
their core differences related to variability mechanisms. For each
difference, we propose explanations and develop hypotheses. We
also identify . According to our conceptual
framework, we begin with the contexts in which the mechanisms
are used. We then compare characteristics of the mechanisms,
including dependency declaration facilities and actual dependency
structures. As architectural openness is a core distinguishing char-
acteristic of our subjects, our comparison focuses on this aspect.
8.1. Context of variability mechanisms

The domains range from systems software (eCos, Linux kernel),
which requires highly technical skills from users, to consumer-ori-
ented mobile apps (Android). We learn that the organizational
structures of variability management and development are inde-
pendent. While all ecosystems foster distributed development,
the variability management activities are performed centrally in
the closed, and in a distributed way in the open platforms. We
identify different processes for contributions to the ecosystems.
The closed platforms strongly filter contributions using heavy-
weight processes including manual reviews; the open platforms
use lightweight processes (little filtering of outside contributions)
in uniform distribution channels. We observe highly diverse
growth rates, with a clear gradation from eCos to Android. This
illustrates the significance of variability encouragement in the
open platforms.
8.2. Variability mechanisms

8.2.1. Variability representation
Differences. Variability is represented differently across the closed
and open platforms. The core differences lie in the abstraction of
variability and the distribution of variability information. Our
closed platforms rely on centralized variability models expressed
in rich languages, while our open platforms use distributed mani-
fest files. We found that a clear difference between manifests and
variability models is that manifests are always fully distributed,
created as individual units with bilateral relations to other
manifests, and used and evolved as individual units. In contrast,
variability models, even if split over multiple files, are created
around a central hierarchy, and used and evolved as an integrated
whole. Furthermore, the granularity of variability differs. The
ecosystem tends to comprise very fine-grained basic units in the
closed, and rather coarse-grained ones in the open platforms.
Proposed explanation. Variability models are effective in central-
ized variability management. Features abstract over codebases
and variation points. Their rich languages and the arbitrary asset
mapping enables fine-grained variability and almost arbitrary
cross-cutting contributions, which occur in the closed platforms.
Consider CONFIG_SMP, a Linux feature that enables the kernel
to operate on multiprocessor machines. The implementation
of CONFIG_SMP cross-cuts the kernel code, affecting central
design aspects such as handling locks, or interrupt and trap
handlers.

On the other hand, variability models are ineffective in a dis-
tributed setting. Fine-grained variability and cross-cutting features
requires thorough and centralized governance of the model to
prevent corruption. Changes to cross-cutting features have far-
reaching implications due to complex dependencies. Thus, they
should be done carefully. The advantage of a variability model is
that it creates a shared vocabulary to express cross-cutting proper-
ties. However, standardization of names is harder to achieve in a
distributed setting. Similarly, the feature hierarchy requires more
coordination than changing flat distributed variability descriptions,
like in manifests. We also find very expressive constraint declara-
tion facilities in variability models, as opposed to manifest files.
These findings together indicate:

Hypothesis 1. A centralized variability model is too fragile for
distributed variability management.

Many developers can contribute code and changes to the
variability model. However, a small team has to watch the impact
of changes to prevent corruption.

To facilitate distributed variability management, our findings
indicate that platforms need to rely on manifest files, which
usually have less-expressive dependency facilities describing
coarse-grained, non-cross-cutting variability:
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Hypothesis 2. Distributed variability management relies on
distributed variability information via manifests.

The opposite direction of this hypothesis does not have to hold.
eCos has a centrally managed, but distributed variability model
(via eCos packages). Since eCos failed to create a vibrant free
market, there is so far no evidence
8.2.2. Decisions
Differences. The decision binding focuses on early static binding in
the closed platforms, and tends towards late dynamic binding in
the open ones. Eclipse and Android are most dynamic, realizing
the binding in virtual machines controlling the run-time of basic
units. The decision lifecycle also differs. The closed platforms focus
on derivation of complete instances using configurator tools, while
re-configuration is the typical approach in the open platforms
using installer tools. Tools differ in their support for dependency
resolution. All tools support choice propagation and conflict
resolution, except Android’s installer.
Proposed explanation. We discuss the decision binding in the next
two subsections. The other differences can be explained by the
target audience of the platforms. Full derivation of instances is
problematic for the less technical users of open platforms,
which therefore focus on re-configuration. Missing dependency
resolution in Android can be explained by missing constraint
declaration facilities in the manifests—currently, the Google
Play installer would have to implement (unreliable) dataflow
analyses.

8.2.3. Encapsulation
Differences. We have not observed any encapsulation concepts—
such as interfaces (beyond header files)—in the closed platforms.
In contrast, Android and Eclipse provide strong interface definition
facilities. Debian also lacks strong encapsulation concepts, but
provides policies (conventions) for some package domains.
Proposed explanation. Variability mechanisms with late dynamic
decision binding require encapsulation concepts, which provide
run-time guarantees about the behavior of basic units. Such guar-
antees cannot be assured earlier, as in the closed platforms. In turn,
encapsulation concepts are not applicable in our closed platforms,
due to the fine-grained variability and the cross-cutting nature of
features. Instead, we can see that the run-time guarantees of
encapsulation concepts are compensated by the rather heavy-
weight contribution processes in the closed platforms.

8.2.4. Interactions
Differences. Similar to the decision binding, the interaction bind-
ing differs across the closed and open platforms. The former have
less dynamic interactions between basic units than the open ones,
with a few exceptions (loadable kernel modules in Linux).
Further, interactions in Eclipse and Android are controlled by a
virtual machine.
Proposed explanation. The need for dynamic adaptations can be
explained by the ecosystem domains. However, we can also see
that the increased degree of controlled interactions at run-time
(Eclipse, Android) is counter-balanced by heavyweight contribu-
tion processes to assure quality in the other platforms (eCos, Linux
kernel, Debian). Together with our insights from the decision bind-
ing and the encapsulation concepts, we hypothesize:

Hypothesis 3. Missing encapsulation and interface concepts need to
be compensated with heavyweight contribution processes to assure
run-time guarantees.
On the other hand, heavyweight contribution processes would
negatively impact the goal of encouraging variability in the open
platforms.
8.3. Dependencies

Differences
The variability mechanisms in our subjects encompass diverse

facilities to express dependencies. We found very expressive con-
straint languages in the closed, and relatively simple ones in the
open platforms. Debian is again in the middle of this spectrum.

One of our most interesting findings are capability-based
dependencies, which target abstractions of functionalities—capa-
bilities—instead of basic units or features. Contrary to the expres-
siveness of dependencies, the facilities to describe capabilities
and capability-based dependencies increase in their expressive-
ness towards Android. An important aspect of capabilities is their
vocabulary. The main vocabulary is always controlled within the
main platform; however, our open platforms also support third-
party vocabularies in the free market.
Proposed explanation

We see a relation of the expressive constraint languages to the
granularity of variability and the early static decision binding, as
identified before. These are typical requirements of a technical
domain:

Hypothesis 4. In systems software, dependencies need to be more
expressive than in end-user applications due to the need for low-level,
fine-grained, and static configuration.

We are, however, unaware of any

Fast-growing and large-scale ecosystems require constructs
that can precisely describe the semantics of a capability. Labels are
too ambiguous for this purpose—although they can be constructed
to be unique, as seen by Debian capabilities. These range from
simple (e.g., x-window-manager) to intricate (e.g., libghc6-

agda-dev- 2.2.6-8c324) labels. DSLs like Android’s intent filter
are a more accurate and viable description of abstracted function-
ality. However,
8.4. Dependency structures

Differences
The median of declared dependencies per basic unit is higher in

the open systems than the dependencies per feature in the closed
systems. This phenomenon is seen across the subject spectrum
except Android, which does not declare dependencies. Capability-
based dependencies are essential and used in all ecosystems to
varying extents, even if the platform has no explicit concept for
capabilities. Our open and dynamic subjects have a significantly
higher proportion of capability-based dependencies.
Proposed explanation

Variability models impact dependency structures, since depen-
dencies are specified over abstract entities (features) mapped to
the physical assets (basic units). Variability models let developers
optimize and collapse implementation-level dependencies, while
the coordination cost for these activities in a distributed setting
may be too high. This characteristic of variability models leads to
a lower density of dependencies:
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Hypothesis 5. Centrally managed variability using variability models
facilitates sparse dependency structures.

Still,
Thus, this

possibly controversial hypothesis requires confirmation.
The higher ratio of capability-based dependencies in the open

platforms can be explained by their ability to reduce coupling

(targets can be exchanged easily). They also improve flexibility and
communication among developers, as they indicate that specific
functionality is available. Capabilities are also abstractions over
functionality that will be contributed in the future. Thus, we
conjecture that capabilities are essential for sustained growth.
Although there are many reasons for high growth, such as the
business context, a vibrant community, or a huge market demand
(especially for mobile phones), we hypothesize that:
Hypothesis 6. Capability-based dependencies sustain the growth of
an ecosystem.

However, although capabilities foster decentralized variability,
they rely on a stable and centralized vocabulary. Yet,

in an ecosystem,
remains an interesting research question. Understanding this aspect
could enhance facilities to support app interactions and reuse.
9. Threats to validity

9.1. External validity

To enhance external validity, we selected large, substantial
cases of ecosystems covering fairly diverse domains, technologies,
and organizational structures. Although representativeness of sub-
jects is not required for theory building from cases, our selection
can be seen as theoretic sampling [61]. Still, smaller ecosystems
controlled by specialized companies in a narrow market segment
(niche players) might have different characteristics not covered
by our conceptual framework. We mitigate this threat by using
an exploratory research method: instead of testing hypotheses,
we record phenomena and carefully develop hypotheses.

We analyzed the subjects as they are. A limitation is that we did
not systematically elicit goals and requirements that led to the
choice of mechanisms. Although the identified mechanisms are
clearly driven by requirements of the domain (c.f., Hypothesis 4),
performing a goal and requirements analysis, and linking the
requirements to characteristics of the mechanisms, would be valu-
able future work, but would require interviewing platform
suppliers.

For the quantitative analysis, we rely on subsets of the ecosys-
tem, which might not be representative. Thus, we considered the
main distribution channels. Tables 5 and 2 show that we covered
significant parts of the ecosystems.

9.2. Internal validity

To enhance internal validity, we limited our data sources to reli-
able documents, freely available source code, and tools. Our obser-
vations were triangulated from these sources. This strategy aimed
at reducing bias due to inappropriate sources. We also assigned
one author as an expert to each subject, who deeply analyzed it.
We cross-checked the within-case write-ups (further field notes
are available from us on request). This strategy aimed at reducing
interpretation bias of mechanism characteristics. To develop
hypotheses, we followed a systematic approach. According to the
conceptual framework, we performed a cross-case analysis, which
identified major differences. We propose explanations for these,
and formulate the most significant relationships as hypotheses.
We provide datasets, details on data sources, additional diagrams,
and our analysis tools in an online repository. This strategy makes
our calculations transparent, to mitigate bias from incorrect
statistics. In fact, some numbers are estimated using interpolations
and safe assumptions (lower bounds).

Recall that all ecosystems except Android declare dependencies.
It is not clear whether our extracted dependencies for Android are
comparable to declared dependencies. In fact, it is subject of
ongoing research, whether actual and declared dependencies are
generally comparable or not. Furthermore, we could not analyze
reverse directions of direct and capability-based dependencies in
Android, given the intricate intent matching algorithm which we
could not emulate. Therefore, we avoid comparing dependency
numbers for Android to other systems. Still, all numbers indicate
scalability requirements for tools. In this sense (algorithmic
hardness), they are useful standalone and, to a large extent,
comparable.

9.3. Construct validity

In the qualitative analysis, the selection of dimensions for the
conceptual framework was driven by our subjects. For different
ecosystems, we could have potentially produced a different taxon-
omy. To mitigate the risk of incompleteness, we performed a
detailed domain analysis of this space, covering the last three areas
of the BAPO taxonomy [62]. The results were rich enough to create
a consistent conceptual framework describing the five subjects by
means of the dimensions.

Eclipse has recently introduced the generic provisioning system
p2 [63], which abstracts over OSGi bundles and replaces Eclipse’s
bundle-based installer tool. However, our qualitative and quantita-
tive analysis only analyzes bundles. This limitation is acceptable,
since bundles are the primary building blocks of the main platform,
and since the main free market repository (Eclipse Marketplace)
still refers to bundles in individual update sites, which we mined.

To analyze dependencies, we constructed measures for specific
types of dependencies, which was also driven by our subjects.
However, dependency types might not be well enough defined to
precisely construct platform-specific analyses. We mitigate this
threat by creating a dependency metamodel in a bottom-up way,
providing further details in an Appendix [14]. But the expressive
facilities required some abstractions. The Debian and Eclipse
dependency statistics disregard version numbers. This limitation
is acceptable—both datasets have no packages in different versions.
For Eclipse, we also disregard services. This limitation has (if any)
only minor impact, as services are rarely used by the Eclipse com-
munity [64]. Future work might investigate these service-based
interactions, but since they are codified in the program logic, that
would likely require a static analysis as complex as our Android
analysis.
10. Related work

In the field of software ecosystems, our work contributes to
research on theory building, architectural openness, variability
mechanisms, and dependencies.

10.1. Software ecosystem theory building

Barbosa et al. [15] review publications on software ecosystems
using a mapping study. They identify ecosystem modeling, ecosys-
tem architectures, licensing, and software evolution as main chal-
lenges. In addition to many theoretical works, the study discovers
ten qualitative case studies identifying characteristics of cosys-
tems. Our conceptual framework of technical aspects contributes
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to these case studies. Hanssen et al. [13] review literature on soft-
ware ecosystems. They target works about theory building around
the ‘‘rather vague and diverse’’ concept of a software ecosystem.
They emphasize the lack of unified terminology and well-defined
concepts that characterize ecosystems, and request theory-
building research. Our work contributes carefully developed
hypotheses about technical mechanisms. Jansen et al. [12] present
a research agenda for software ecosystems, proposing to study
ecosystems such as MySQL/PHP, Microsoft Windows, and iPhone
apps. We deliver on this agenda by investigating similar systems.
They announce the characterization and modeling of ecosystems
as a main challenge, which we address with empirical data.
10.2. Architectural openness

Anvaari et al. [9] have studied architectural openness of ecosys-
tem platforms before. They analyze the five mobile application
platforms Android, Symbian, Windows Mobile, Blackberry, and
iPhone using a literature review and developer interviews. They
discuss openness strategies, corresponding platform architectures,
and their variability mechanisms (‘‘extension mechanisms’’). Their
results also indicate that openness is a spectrum, and that non-
technical aspects have a significant impact. For instance, although
Symbian and Android are technically most open, in practice, other
issues hinder contributions, such as a strict filtering of outside
contributions to the main platform or licensing issues. We comple-
ment their work with a qualitative and quantitative analysis of
variability mechanisms. Interestingly, the authors discuss a
three-layered architecture of mobile application platforms (apps,
middleware, kernel). From that perspective, our work investigates
each layer separately, as our subjects cover each of them: Android
(app layer), Debian (middleware layer), and Linux (kernel layer).
10.3. Variability mechanisms

Variability mechanisms have been discussed from various per-
spectives. Schmid et al. [65] discuss variability (‘‘customization’’)
mechanisms in service platforms, based on a literature review
and an industry partner’s yard management system (YMS). They
describe various forms of variability occurring in the platform,
and identify static and dynamic variability mechanisms suited for
service-oriented platforms from the literature. They discuss their
shortcomings and propose coarse-grained mechanisms applicable
to the YMS. Their work is related, as service platforms can be the
basis of ecosystems. However, in contrast to a literature review
and theoretical discussion of mechanisms, we empirically study
large-scale platforms, two of which (Eclipse, Android) have a
service-oriented character.

Other works provide transformations between variability mod-
els and manifests. Cosmo et al. [66] show how feature models can
be encoded as interdependent manifests. Galindo et al. [67] inter-
pret Debian manifests as one feature model. In both works, the fea-
ture modeling languages are much simpler than the languages we
investigated. Another comparative study of Eclipse and Debian
manifests was done by Schmid [68]. He concludes that constraint
declaration facilities of Debian and Eclipse manifests are compara-
ble in their expressiveness to feature models, with minor limita-
tions. He also identifies a number of concepts (e.g., versioning
and information hiding) to handle variability in a distributed
development structure.

We extend the latter three works. Our results challenge the
practicality of transformations between real-world variability
models and manifests, due to the diverse expressiveness we
observed and Hypothesis 1 that such models are not applicable
in a distributed setting.
10.4. Dependencies

Researchers have studied dependencies in ecosystems. Lungo
et al. [69] recover dependencies between related software pro-
jects—the main entities in their notion of a software ecosystem.
They assume that projects are linked together in some form, and
consider dependencies originating from method calls and class ref-
erences among the projects. They propose a metamodel and
instantiate it by mining 211 Smalltalk projects. Robbes et al. [70]
present early results on a study of API ripple effects (forced main-
tenance of code when a used API changes) in two ecosystems. They
consider structural changes: addition, removal, and renaming of
classes and methods. They observe that ripple effects can have a
long lifecycle (up to four months), during which assets remain in
an inconsistent state.

Both works consider ecosystems as collections of individual
software projects, managed within their own source code reposito-
ries and having references to each other, not necessarily relying on
a common run-time platform, but using common programming
language mechanisms (e.g., class referencing, method calls). This
view of ecosystems is different from ours. In fact, in our three open
platforms, the relationship between basic units and projects is not
obvious. While many basic units might be related to exactly one
software development project, we believe this relationship is more
diverse. Thus, their identified dependency structures are different;
theirs and our work provide complementary views. Finally, we also
contribute a technique to discover dependencies between Android
apps, with a static analysis of Android (Dalvik) bytecode.
11. Conclusion

With our exploratory study of five successful ecosystems, we
took one, but self-contained step towards building a theory. We
explored the spectrum of mechanisms, built a conceptual frame-
work, and used it to compare the subjects. We propose explana-
tions for the differences and develop hypotheses with practical
implications for project management, architecture, and tool
support.

11.1. Conceptual framework

The conceptual framework was instrumental to compare our
subjects. Beyond being a helper construct, it also aims at under-
standing variability mechanisms, their characteristics and relation-
ships. For instance, it relates variability models, manifests, and
types of assets. It allows reasoning about ecosystems with a
common terminology. Characteristics in the framework reflect
important design decisions that platform providers have to make.
Instantiations of the framework for each of the studied ecosystems
provide insight into the concrete solutions to variability, and the
organizational contexts in which they are used. The framework
can be extended or refined by other researchers when conducting
further studies of ecosystem technology. It can also be related to
other frameworks addressing non-technical aspects.

11.2. Variability mechanisms

We learn that variability models are effective in centralized var-
iability management scenarios, and particularly for systems soft-
ware. It is not clear whether they would be beneficial in a
distributed variability management scenario. In all the studied eco-
systems, we find rich dependency languages and variability
descriptions comprising many direct and indirect (capability-based)
dependencies. Indirect dependencies to abstract capabilities, as
opposed to concrete units, are used intensively in highly growing
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ecosystems. Ecosystems with large free markets of assets available
for end users offer much simpler dependency languages, respect-
ing the less technical nature of the consumers of their product.
On the other hand, they rely on more expressive capabilities, which
should not just be labels, but DSLs with an extensive vocabulary.

11.3. Variability encouragement

Recall that variability management in closed platforms, such as
software product lines, aims at taming variability, to avoid diver-
sity that has no business advantage. This objective is supported
by activities such as variability modeling, scoping (controlling
and restricting contributions), and maintaining variability infor-
mation of basic units (unit parameters, dependencies, versioning).
The involved variability mechanisms are rather heavyweight and
require advanced technical skills, which hinders contributions.
The mechanisms used by open platforms target a different set of
activities. Among others, these comprise maintaining capabilities
and common vocabularies, establishing uniform distribution chan-
nels, and lowering the entry barriers for contributions while assur-
ing their quality using technical mechanisms. The identified
mechanism of very different nature in open ecosystem platforms
calls for recognition of a new discipline in variability research:
Variability Encouragement. Analyzing the activities behind it and
relating them to known software engineering processes and
practices is an agenda for future research.
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