Information and Software Technology 56 (2014) 1508-1519

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Contents lists available at ScienceDirect INFORMATION

SOFTWARE
TECHNOLOGY

Measuring the health of open source software ecosystems: Beyond
the scope of project health

Slinger Jansen ™

@ CrossMark

Department of Information and Computing Sciences, Utrecht University, The Netherlands

ARTICLE INFO

Article history:

Received 8 July 2013

Received in revised form 28 March 2014
Accepted 3 April 2014

Available online 19 April 2014

Keywords:

Software ecosystem health
Open source ecosystems
Software repository mining

ABSTRACT

Background: The livelihood of an open source ecosystem is important to different ecosystem participants:
software developers, end-users, investors, and participants want to know whether their ecosystem is
healthy and performing well. Currently, there exists no working operationalization available that can
be used to determine the health of open source ecosystems. Health is typically looked at from a project
scope, not from an ecosystem scope.

Objectives: With such an operationalization, stakeholders can make better decisions on whether to invest
in an ecosystem: developers can select the healthiest ecosystem to join, keystone organizers can establish
which governance techniques are effective, and end-users can select ecosystems that are robust, will live
long, and prosper.

Method: Design research is used to create the health operationalization. The evaluation step is done using
four ecosystem health projects from literature.

Results: The Open Source Ecosystem Health Operationalization is provided, which establishes the health
of a complete software ecosystem, using the data from collections of open source projects that belong to
the ecosystem.

Conclusion: The groundwork is done, by providing a summary of research challenges, for more research
in ecosystem health. With the operationalization in hand, researchers no longer need to start from
scratch when researching open source ecosystems’ health.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

“Ruby or Python?” “SugarCRM or a closed-source competitor?”
“Drupal or Joomla?” “RedHat or Ubuntu?” These are questions
often asked by developers, professionals, entrepreneurs, architects,
and stakeholders related to software producing organizations.
Choosing between different ecosystems is a complex task and such
a decision will be determining many of the future developments
within an organization. At present the only way to answer such a
question is by doing sufficient reading, asking around, and finding
out what the risks are of choosing to enter an ecosystem. One indi-
cator of whether an ecosystem is alive or not can be determined by
looking at the health of the keystone project, for instance by
looking at the activity surrounding the Ubuntu project. Such activ-
ity consists of commits, recent releases, fixes, number of
downloads, response times in forums and bug trackers, activity

* Tel.: +31 619884880.
E-mail address: slinger.jansen@uu.nl

http://dx.doi.org/10.1016/j.infsof.2014.04.006
0950-5849/© 2014 Elsevier B.V. All rights reserved.

on e-mail lists, and contributions from non-developers. However,
project health # ecosystem health.

Ecosystem health is operationalized in this work by taking a
combined view at a keystone project and its surrounding projects.
This work stands on the shoulders of two relevant contributions in
the field of ecosystem health measurement. First, the work by
Crowston et al. [3], who have provided a first operationalization
of open source software project health, is used to establish health
factors on the project level. Their work is also fundamental to OSS-
Mole,! a collection of meta-data about projects in some of the main
repositories, like Github and SourceForge. Secondly, the work of den
Hartigh et al. [6], where an operationalization of health measure-
ment of a commercial ecosystem is provided, is followed as closely
as possible.

Software ecosystems are sets of actors functioning as a unit and
interacting with a shared market for software and services,
together with the relationships among them [15]. A healthy unit
should thus express qualities typically associated with health:

1 http://flossmole.org/.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.04.006&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2014.04.006
mailto:slinger.jansen@uu.nl
http://flossmole.org/
http://dx.doi.org/10.1016/j.infsof.2014.04.006
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

S. Jansen/Information and Software Technology 56 (2014) 1508-1519 1509

liveliness, activity, longevity, etc. For this work, we take a simple
definition for software ecosystem health: longevity and a propensity
for growth [19]. The definition is only the first step, as both longev-
ity and propensity for growth can be operationalized in different
ways with a plethora of different metrics.

There is a distinct need for an Open Source Ecosystem Health
Operationalization (OSEHO). Manikas and Hansen [23] recently
published a call to action for the creation of such an operationaliza-
tion, and laid the groundwork for it. Also, in our research agenda
for software ecosystems [17], we call for more research into eco-
system health. Others have attempted to create their own opera-
tionalization, but these typically get stuck in the concept phase
[31,3,30]. In this article, an OSEHO is provided and evaluated using
four research projects into open source ecosystem health.

We continue this work with a description of the literature on
health measurement in ecosystems and open source projects. Sec-
tion 3 discusses the creation of the OSEHO and its evaluation chal-
lenges. In Section 4, the OSEHO that provides methods for
measuring health of open source software ecosystems is presented,
consisting of a generic ecosystem health model and a set of meth-
ods for analyzing open source ecosystem health. In Section 5 four
research projects are presented that apply parts of the model in
practice. Furthermore, an analysis of the research projects and
their aims (provide insight mostly), the indicators most frequently
used (active developers, projects), and the research methods
applied (mining repositories, web scraping) are presented. Sec-
tion 6 presents a set of challenges that are met when applying
the model and that were found in the four research projects,
mostly having to do with data selection, preparation, and analysis.
The article ends with a discussion on the applicability of an OSEHO
and a summary of the conclusions and future research challenges.

2. Literature about ecosystem health

There is surprisingly little literature available about open source
ecosystem health. Different perceptions exist and frequently eco-
system and project health are used interchangeably, such as in
the work of Lundell et al. [20], who discuss open source ecosystems
as being equal to one project. In the continued work of Gamaliels-
son et al. [9,8], the responsiveness of developers on the mailing list
of the Nagios community is measured as an indicator for open
source community health, but does not take an extended view of
multiple projects within that community. The correct use of the
term ecosystem in the open source domain is illustrated by Lungu
et al. [21], who look at ecosystem as federations of systems. For
this work the aggregated view is seen as the only way to look at
ecosystem health, as the project level has already been studied
extensively.

The research in this project is largely dependent on the proposal
of Manikas and Hansen [23], who wish to operationalize the eco-
system health concept. Manikas and Hansen split their work along
the categories of software ecosystems, business ecosystems, open
source ecosystems, and natural ecosystems. In our literature sur-
vey the category of natural ecosystems is excluded, as this is
already sufficiently discussed by Manikas and Hansen and also
by Dhungana et al. [7], and a distinction is made between open
source project health and open source ecosystem health. Related
work is thus roughly divided into the categories: project health,
commercial ecosystem health, and open source ecosystem health.
The sources of literature are two literature surveys in the domain
of software ecosystems [22,2] and in the domain of open source
ecosystem health [23].

In regards to open source ecosystem health, the work of Wynn
[31] first takes the three factors into account of vigor, resilience,
and organization, analogous to natural ecosystems. The terms are

later adopted and changed by Iansiti and Levien [14], to productiv-
ity, robustness, and niche creation. The framework presented by
Wynn has been inspirational, and many of the factors in Wynn’s
framework have made it into the OSEHO presented in Section 4.
Unfortunately, Wynn'’s framework does not present an evaluation
or validation of the framework or its measures. The work of Man-
ikas and Hansen [23] has also been fundamental, as it establishes
an ecosystem as a collection of projects, and is taking different
viewpoints into ecosystem health, thereby functioning as an eval-
uation checklist for the OSEHO. Finally, the work of Mens and Goe-
minne [25] (a detailed description of this work is given in
Section 5), even though the word health is never mentioned in
their chapter, is inspirational when looking at the collected metrics
of developer roles and activity.

The work on project health has been used extensively: metrics
about project health in most cases can be aggregated to the ecosys-
tem level and thus most (if not all) project health metrics are rel-
evant for the OSEHO. The works of Crowston et al. [3] and
Wiggins et al. [30], operationalizing project health by looking at
factors such as developer activity, have provided around a third
of the metrics that can be found in the project level metrics of
the OSEHO. A survey by Haenni et al. [11], in which developers
are asked what they want to know about the software ecosystem
in which they are active, concluded that developers have down-
stream needs: “what is the available public support? What licenses
are used? What is the quality of other projects? What documenta-
tion is available?” and upstream needs: “What other projects use
my project? How do these projects develop? How is my API used?
Are code conventions followed?” These questions have been taken
into account in creating the OSEHO framework as well.

Finally, commercial ecosystem health is a highly relevant topic.
It is discussed extensively by Iansiti and Levien [14], who first pro-
vide guidelines on how ecosystem health may be operationalized.
The work has been fundamental to the work of den Hartigh et al.
[6], who first try to operationalize the health of a business ecosys-
tem, based on the categories of health metrics presented by lansiti
and Levien. The challenges that Den Hartigh and his team face in
the commercial domain (missing data, impossible to create one
single health measure, etc.), have been essential to the design of
the OSEHO.

3. Research approach

The goal of this research is to provide a comprehensive over-
view of the health metrics that can be used to determine the health
of an open source ecosystem. It does so by creating an inventory of
all metrics mentioned in literature that could potentially indicate
ecosystem health and then placing these metrics in a framework.
The framework can be applied by researchers who aim to reach a
goal associated with ecosystem health, such as improve activity
in an ecosystem, evaluate the health of one ecosystem over
another, or identifying weaknesses in an ecosystem with the aim
of making it healthier. The research answers the research question
“What are the health indicators for open source ecosystems and how
can, if at all, the indicators be classified and operationalized?” Please
note the wider scope of the open source ecosystem: the research
does not aim to evaluate the health of a single project, as that
has extensively been done (see Section 2).

The evaluation of the framework is done by examining four
research projects into ecosystem health, that have recently been
done in the domain of software ecosystems. The four research pro-
jects have been selected from two literature surveys [2,22] and
through searching for ecosystem health keywords. The selection
criteria for inclusion are based on the fact that they take an ecosys-
tem wide view, instead of just a project view, on open source

1510

ecosystem health. The four projects have been described in four
papers, and published in software ecosystem forums. No other fit-
ting projects were found, and we consider it future work to pro-
gressively add new studies on software ecosystem health as they
are published. The works that were selected were analyzed as fol-
lows: first, the aim of the research was extracted. Secondly, the
sources that were used for data gathering were extracted and
described, to present an overarching view of typical sources for
ecosystem health studies, as described in Section 5.2. Thirdly, the
methods for gathering data are inventoried, also as illustration to
future researchers. Fourthly, and perhaps most importantly, the
metrics that were collected are listed to establish their role and
function in the OSEHO. No new metrics were added based on the
papers, which furthers our belief that the previous works describ-
ing ecosystem health (without operationalizing) and works
describing project health covered all the metrics already. Finally,
the contribution, challenges, and discussions in the papers are ana-
lyzed to further illustrate the use of the metrics.

4. Open Source Ecosystem Health Operationalization (OSEHO)

Fig. 1 represents the OSEHO. The framework is built up out of
three pillars, being the productivity, robustness, and niche creation
pillars, which are addressed in the discussion of the literature in
Section 2. The pillars are separated into three layers, being the the-
ory level, the network level, and the project level. At the top level is
displayed what the theoretical model of Den Hartigh prescribes to
use as guidelines for operationalizing the health concept, which in
turn is inspired by lansiti and Levien [13], which in turn is inspired
by the concepts from natural ecosystems: vigor, resilience, and
organization. The translation into the open source domain is done

Productivity
|

S. Jansen/Information and Software Technology 56 (2014) 1508-1519

on the second level, where the health operationalization at the net-
work level is presented. At the third level a comprehensive over-
view is created of project health metrics, which, if collected for
multiple projects in an ecosystem, can be used as an aggregate
metric to describe overall ecosystem health.

4.1. Creating the OSEHO

The framework was created by first establishing that the split
into the network level and project level is necessary to distinguish
between ecosystem level metrics and (aggregated) project level
metrics. Secondly, two lists of papers were created, one with pro-
ject level health operationalizations and one with ecosystem
health operationalizations. The metrics from each of the levels
were collected. Then, to add more structure and make sure the
essential elements of ecosystem health were covered, the three pil-
lars of productivity, robustness, and niche creation were added, fol-
lowing the work of den Hartigh et al. [6].

Metrics were included when they fit the following criteria: (1)
the metric had to stem from literature about project health or eco-
system health, (2) contribute positively to ecosystem health, (3)
the metric was operationalized or at least operationalizable into
a measurable entity, and (4) the metric was generalizable to multi-
ple projects to get to the ecosystem scope. As the metrics came
from literature, the second, third, and fourth criteria were added
to filter out metrics that were not relevant, not contributive, or
not operationalizable for the OSEHO. Please note that when a met-
ric was reversible, only the positive variant of the metric was
added, as for example “installs over a month” versus “de-installs
over a month”. The metric selection criteria are based on the
source of metrics (criterion (1)), the definition of ecosystem health

Niche Creation

|
: |
| 2 : Total factor productivity | I Survival rates | | Value creation]
| 8 | | Productivity improvement | | Persistence of structure | | Variety |
: = | | Delivery of innovations | | Predictability | 1 |
| = | | : | Limited obsolescence : | :
| [\ | Continuity \ | |
L —— _! I_ _________________ - ____ J l_ _________________ a
‘6] New related projects (@ 0 G Total number of active projects @ 0@@ Variety in projects @
E 5 Downloads of new projects Project connectedness/Cohesion ﬁ)
U = Added knowledge about ecosystem Core network consistencyo
z Events Outbound links to other SECOs
Switching costs to other SECOs
Productivity Niche Creation
KLOC/time period added @ @) Partnerships and embeddedness Variation in contributor type @)
New tickets Organizational maturity Variation in project applications
New downloads € Commercial patronage Supported natural languages @)
Knowledge and artifact creation @ i Capital contributions and donations Variety in supported technologies Q
] Mailing list responsiveness i Variety in development technologies @
5 Bug fix time Contributor satisfaction Multiple markets
- Spin-offs and forks @ Active contributors @ @ @ i
° New partnerships Contributor ratings and reputation
Q New patents Multi-homers
e Usage Contributor connectedness
Q.
Interest: Page views, search statistics @H
Market share
Switching costs to alternatives
User loyalty and usage
User satisfaction or ratings
Artifact quality

(D Lucassen et al., 2013 € Hoving, Slot, and Jansen, 2013

@ Goeminne & Mens, 2013

[van Lingen, Palomba, and Lucassen, 2013

Fig. 1. Open Source Ecosystem Health Operationalization - the shapes indicate the occurrence of the metric in one of the research projects.

S. Jansen/Information and Software Technology 56 (2014) 1508-1519 1511

(“longevity and a propensity for growth”) (criterion (2)), and the
requirement that the OSEHO has to be realistically applicable (cri-
terion (3)) to multiple ecosystems (criterion (4))).

Metrics that particularly address growth, such as new related
projects, are put into the productivity column. These metrics should
specifically address a variable change over a time unit (new pro-
jects per month, new commits per week, etc.). Metrics that address
robustness, such as the number of active projects, are added to the
robustness column. These metrics are typically used to compare
ecosystems in terms of size (“as of November 2013, the Python
ecosystem contains at least 39,000 extensions, whereas the Ruby
ecosystem contains at least 66,000 extensions, so arguably the
Ruby ecosystems is larger”). Some metrics are about variety within
the ecosystem, such as contributor types, project variety, and these
are put into the niche creation column. We did not encounter met-
rics that fit multiple pillars in the system. The metric “cohesion”,
for instance, is a static measure and therefore fits the robustness
column. The metric “new partnerships” addresses a change over
time, and therefore fits the productivity column.

There is little overlap between the columns, as the robustness
column addresses absolute entities, whereas productivity metrics
typically address changes over a period of time. The niche creation
column also addresses absolute numbers but has little overlap
with the robustness column, as it addresses specific variables that
mostly deal with variability. There are many potential dependen-
cies between metrics, however, there exist little “hard” dependen-
cies. For example, a project that has many happy contributors may
have more active contributors, but these relationships are situa-
tional, as a mature ecosystem may not require large numbers of
contributions from its developers. In a similar example, there
might be many more new projects in an ecosystem with many dif-
ferent markets, but if the ecosystem is not healthy, there may be no
new projects, despite being active in different markets.

4.2. Network level

A plethora of work has been done on software project health.
However, as concluded previously, it is impossible to directly pro-
ject the health of a project onto ecosystem health, as ecosystem
health takes into account multiple interrelated projects, contribu-
tors, and end-users. The network level of the OSEHO concerns met-
rics that describe ecosystem health and can only be described on
that level. The events metric, for instance, looks at organized events
where stakeholders are brought together that share an interest in
the total ecosystem, instead of only including specific project events.

The Productivity metrics on the network level are those metrics
that indicate the productivity in the ecosystem. First, new related pro-
jects are projects that are part of the ecosystem, such as the launch ofa
new plug-in for the Eclipse development environment. The downloads
fornew projects indicate that the ecosystem is healthy, as new projects
still find a welcoming community. The added knowledge indicates that
contributors are adding knowledge, such as aggregated information,
blog posts, and manuals, indicating also that the ecosystem is healthy.
Finally, organized events surrounding the ecosystem are an indicator
that the ecosystem is healthy. Events are a measure of productivity, as
an increase in events over a certain time period may indicate a more
healthy ecosystem.

The Robustness metrics on the network level indicate how
well the ecosystem will deal with change and how quickly it will
recover. The number of active projects, for instance, is a strong indi-
cator of strength and power in numbers. Cohesion, i.e., connected-
ness between members, and core network consistency are both
indicators of how well connected parts of the network are, based
on the assumption that a well-connected network is healthier. Out-
bound links to other software ecosystems indicate how well the eco-
system is connected to other ecosystems, and how much those

ecosystems depend on this ecosystem. Outbound links are a mea-
sure of robustness, as a more connected ecosystem can better
withstand shocks within the ecosystem by enabling well con-
nected projects to seek activity, revenues, and end-users from
other domains, ecosystems, and projects during such a shock.
Switching costs to other ecosystems indicate how hard it is to move
to another ecosystem for an ecosystem player, and how easy it is to
multi-home as a niche player, i.e., avoid strong dependencies on an
ecosystem by being part of multiple.

The Niche Creation metrics on the network level describe
how much opportunity there is in the ecosystem to start as a
new niche player. This is mostly defined by a large variety in pro-
jects, indicating there are many niches, platforms, domains, etc.,
in which a new player can become active.

4.3. Project level

The network level describes those metrics that can only be cal-
culated by looking at the complete ecosystem. One level deeper,
one can look at the ecosystem’s constituents (i.e., the projects
and everything attached to those projects). The project level met-
rics are to be seen as metrics about the aggregate metrics that
can be derived by looking at multiple projects. Single project met-
rics are not interesting, unless the project constitutes a significant
portion of the ecosystem.

The Productivity metrics on the project level are the metrics
that indicate how much the projects contribute to the total ecosys-
tem. The most important metric is typically the number of lines of
code added or changed over a time period, as this is a prime indi-
cator for the activity of contributors in the ecosystem. Productivity
is also seen in the knowledge and artifact creation by contributors,
such as manuals, translations, marketing materials, etc. Also, the
number of spin-offs and forks provides a relevant metric, as this
indicates developer interest. Finally, new partnerships and any pat-
ent activity indicate that the project, and thus its surrounding eco-
system, is becoming more productive.

Other indicators are the number of tickets and related bug fix
time, as these indicate how quickly problems are reported and
resolved in the ecosystem. Similar to this is the livelihood of a mail-
ing list: the more lively it is, the more people are (probably) con-
tributing and using the project. The number of downloads
indicates how many end-users actually start using the product,
and any increase or decrease in this number is an indicator that
health may be increasing or declining. The usage of a project is also
highly indicative of how important a project is to its end-users, and
can be used as a predictor of robustness.

The Robustness metrics on the project level indicate how well
the project deals with change. Typically, the best defense for a pro-
ject to survive a big change is in numbers: a large number of active
developers, for instance, is indicative of a robust project, and the
more robust projects there are in an ecosystem, the healthier it
can be considered.

Because of the large number of metrics in this category, the
indicators are put into three conceptual groups: organizational,
contributors, and end-users. The three groups are mostly created
for clarity. They do, however, enable a researcher wishing to
research the robustness on a project level, to address one of the
groups separately with a particular research approach. The contrib-
utor group, for instance, can be approached by a survey to obtain
the metrics that are relevant in that group.

The organizational metrics include partnerships and embedded-
ness, as partnerships indicate a strong project that is well embed-
ded in the community. Similarly, commercial patronage and
capital contributions and donations are indicators of acceptance by
commercial organizations, also showing that the project will prob-
ably not go away soon. Finally, organizational maturity of the pro-

1512 S. Jansen/Information and Software Technology 56 (2014) 1508-1519

ject indicates that the project is probably managed well, thereby
also guaranteeing robustness for the project.

In the group of contributors, the most important metric is the
number of active contributors and their satisfaction with the project.
Another factor that can be taken into account when establishing
how robust an ecosystem is, are contributor ratings and reputation,
describing how well the developer is contributing and performing
within the ecosystem. These ratings and reputation can be
established by looking at their standing in the community, their
numbers of commits, their individual bug fix times, etc. When
these developers multi-home, it adds to the robustness of the
project as the developer is well connected and may establish
new relationships for the project. A final sign of robustness for
developers is that a contributor is well-connected in the project,
as highly connected networks are more robust than loosely
connected networks.

Finally, in the end-user group, end-user interest, in the form of
page views, project “followers”, search statistics, and other indica-
tors of interest can be used to establish robustness. Also, market
share and user satisfaction are clear indicators that tell whether a
project is robust or not. Furthermore, if switching costs to other
solutions are high, end-users tend to stay with a project for a long
time. Also, user loyalty and usage indicate how robust a project may
stay in the future, if metrics such as usage and attrition are known.
Finally, the quality of the project artifacts indicate whether the pro-
ject is fickle, or whether it has been built to last.

The Niche Creation metrics on the project level indicate
whether the project allows for sufficient freedom and variation
to enable end-users and contributors to create new niche solutions
with the project. When a project, for instance, supports many differ-
ent technologies it can be used broadly in different contexts,
thereby facilitating new and innovative ways of using the project.
The same holds for a project that is used in different markets, is
available in different languages, and has been built with different
development technologies, as that allows more people with different
skill sets to join in with the project. From these factors it already
becomes clear that having a project that can be applied in a wide
variety of contexts, will be more supporting for niche creation.
Finally, a strong variation in contributor types shows that a project
is mature and enables different types of contributors to come up
with new domain specific applications.

Manikas and Hansen [23] in their work look at actor health,
software health, and orchestration health. In the OSEHO, these lev-
els are not identified explicitly. The actor in “actor health”, for
instance, may be the open source developer, the organization that
developer stems from, or even the keystone organization itself. In
the OSEHO most of the actor health factors are part of the project
level. Orchestration has deliberately been left out of the OSEHO:
the results of orchestration are reflected by changes in the metrics
in the OSEHO and should therefore not be part of the OSEHO, in our
opinion. One aspect of orchestration, for instance, is licensing. A
license can be detrimental to the adoption of a project, if it is infec-
tious [28], for instance. Should a license be changed to become
more reuse friendly, this should be reflected in the metrics over
time. Finally, the OSEHO spends less attention on software health,
whereas Manikas et al. specifically address software component
health, platform health, and software network health. In the OSE-
HO these are not specifically addressed, but are reflected in the
artifact quality measures, project connectedness metrics and in
the variety measures.

4.4. Analysis method
When a researcher is interested in establishing the health of an

open source ecosystem, she can apply the framework in the follow-
ing way:

1. Set goals - First, the researcher will establish the goal of the
health assessment. By summing up the goals, she can determine
which metrics are most relevant. This is also the phase where
the researcher will determine the frequency of data collection,
so whether this is a one-time assessment or something that
needs to be done continuously.

2. Select ecosystem scope - Secondly, the researcher needs to
establish whether to study one subsystem in its context, or
multiple ecosystems in a broader context. Scoping too narrowly
results in a limited view on the complete ecosystem (ignoring
the non-open source browser Internet Explorer when deciding
for which browsers a browser plug-in will work, for instance),
where a scope that is too wide results in non-informative data
on larger ecosystems (gathering data on all Linux variants,
where the subcluster of Debian variants was already selected
as being most interesting for a specific research question).

3. Select metrics — The goals are used to select the specific metrics
that are relevant to reaching those goals. Preferably, the metrics
can be collected comprehensively, but as will be highlighted in
the research challenges in Section 6, this is not trivial and prac-
tically impossible in most cases, so the researcher will have to
suffice by collecting data for subsets of the metrics.

4. Assess available data - The researcher will assess which data is
available and whether the collection will be sufficient to reach
the goals set in the first step.

5. Collect data - The data is collected using the most efficient
methods available, such as repository mining, sending out a
survey to ecosystem participants, doing financial analysis,
studying literature and existing reports, and any other
method that can satisfy the data requirements described in
step 2.

6. Analyze the data - The data is analyzed and goals are satisfied.

The analysis does not differ from a typical data mining
project and must be customized for each ecosystem or research
project. A relevant question that must also be asked is how
frequently one wishes to perform the analysis. Furthermore, it is
recommended that any tools or data sets are published, as they
provide a history to future researchers, can be used to validate
research, and can be reused in case the project is redone in the
future.

In scoping the ecosystem, a fitting view on software ecosystems
is taking the view that the complete software ecosystem is a large
database with organizations, ranging from one-man teams up to
multi-national software vendors, that produce software. When
deciding which of these organizations should be included in the
ecosystem analysis, the researcher should define inclusion criteria,
such as “creates Linux software”, “creates plug-ins for Firefox”, or
(even narrower) “writes scripts for GreaseMonkey (a language for
changing how web pages are viewed in the Firefox browser)”.
As soon as the set of organizations that are included in a research
project is known, the researcher can start collecting data on
them.

4.5. Applying the method and OSEHO in practice

When applying the method, beneficiaries need to establish their
goals. To illustrate, we provide the following non-exhaustive list of
use cases for the method and the OSEHO.

In the first and perhaps most important scenario, an open
source project organization must constantly look at its own growth
and health. Several examples of metrics that must be continuously
collected and evaluated are the number of third-party extensions
to the platform, the number of active contributors, the events orga-
nized around the world for the project, download numbers, and
success metrics of other competing projects. It is interesting to

S. Jansen/Information and Software Technology 56 (2014) 1508-1519 1513

see that an organization such as the Eclipse foundation consists
mostly of ecosystem coordinators, intellectual property experts,
and support engineers.? Furthermore, it should come as no surprise
that the Eclipse Foundation in their year end reports focus specifi-
cally on the metrics mentioned above.’

In a second scenario, software producing organizations regu-
larly need to assess whether they will have their commercial activ-
ities depend on an open source platform, such as a database
platform, a web server, an IDE, or another essential third-party
component. These decisions are typically long-term: the software
producer expects to benefit from a strategic decision about
depending on a third-party platform and must invest to integrate
that component. Such a decision should not be made lightly: what
if the third party platform changes its license? Or what if the team
behind the component decides to fork a project and continue under
a different name? And what if important issues are rarely fixed?
Software producing organizations must regularly (i.e., yearly) do
a health check of the ecosystem surrounding the platforms they
depend on, as radical changes in these ecosystems can strongly
influence the success of the software producer’s software products.
In several case studies we have observed that the software produc-
ing organization started participating actively in the development
of the open source platform or started themselves building plug-
ins for it [16].

A third scenario is that of an end-user representative deciding
whether to structurally start using an open source platform, such
as for Word processing, for long term use. An end-user representa-
tive can potentially decide for thousands of users whether to go for
an open source platform (i.e., LibreOffice) over a commercial vari-
ant. Such a choice is obviously not made lightly: a platform needs
to be adopted into an organization’s infrastructure, providing mass
deployment, support, courses, and other services surrounding the
platform. The application owner within that organization must fre-
quently check on the health of the ecosystem surrounding the pro-
ject, to find potential extensions for the platform, to see how
competing platforms are doing, and to make sure there is a fertile
and healthy ecosystem surrounding the project to ensure of its
continuance. The health scan will in this case typically serve as
an addendum to a much heavier functional evaluation of the
platform.

Putting to use the OSEHO, organizations can gain strategic
advantage over others. Software ecosystem coordinators (such as
the Eclipse Foundation) require the information that stems from
the metrics in the OSEHO to make well-informed decisions about
their strategy. If we (imperfectly) equate a software ecosystem to
a platform, we can follow Cusumano’s Staying Power [5] conditions
for a successful strategy. Specifically, he mentions that there
should be strong network effects, there should be little differenti-
ation between platforms, and multi-homing must be hard. Many
of the metrics can assist in making decisions about these three fac-
tors. The more active contributors there are, for instance, the more
network effects you gain. Furthermore, the more domain specific
solutions there are to your platform, the more end-users can use
the platform. In regards to multi-homing, it is interesting to see
for what other platforms the extenders in your own ecosystem
release their component: it may be beneficial to make multi-hom-
ing harder or to assimilate the other platform into the ecosystem.
With the metrics in mind, ecosystem coordinators can make stra-
tegic decisions about where they want to improve and invest.

The OSEHO attempts to do the same for end-users and end-user
organizations: provide them with insight into the healthiest eco-
systems such that they can adjust their strategy to it. The OSEHO

2 http://www.eclipse.org/org/foundation/staff.php.
3 http://www.eclipse.org/org/foundation/reports/annual_report.php.

enables an end-user organization to choose, for instance, between
investing in the development of a domain specific solution for a
healthy platform, versus taking what is already available from an
unhealthy platform. In a long term strategy, the first option should
prevail.

5. Analysis of the research projects

Four research projects have been selected to illustrate the use of
the OSEHO. The selection criteria have been listed in Section 3.

The first project applies ecosystem health metrics to determine
how healthy the ecosystems surrounding commercial Platform as a
Service providers are [19]. The goal was to provide stakeholders in
these ecosystem with insight into their ecosystem development
and the most important metrics that indicate success in these eco-
systems. The data source was GitHub and statistical analysis was
used to determine that Heroku, a platform as a service provider,
is currently doing best, but that there are others growing very
quickly.

The second project looks into the health of the Python open
source ecosystem, by extracting information from a collection of
projects that are part of the Python ecosystem [12]. The Python
ecosystem is highly active and grows quickly (exponentially, at
some points even). The stakeholders in mind are keystones in the
ecosystem, as they may wish to steer the ecosystem in a certain
direction. A number of key characteristics defining the health of
an open source ecosystem are established and the authors call
for an extension of the work to other ecosystems.

The third project aims to validate a framework for open source
community analysis. The framework is still in use and further
developed, with the aim of analyzing developer behavior in open
source communities, where health does not have to be the main
focal point in the research. They evaluate the framework by taking
an extended view at all projects in the Gnome ecosystem [25].
They establish the roles and activities of developers over the differ-
ent projects in the ecosystem.

The fourth project looks at three of the largest open source con-
tent management systems and finds that ecosystem health and
adoption are not equal [27]. Health is looked at by extracting pro-
ject information from projects related to the content management
systems. The largest challenge found in the paper lies in the health
comparison between the three ecosystems. The research projects
are summarized in Table 1. For each of the rows in the table, the
observations about the projects are discussed.

5.1. Aims, research methods, frameworks, indicators, and
contributions

When looking at the aims of the different research projects, it
becomes clear that the recurring pattern is that some other entity,
outside of the academic community, can be informed by the
knowledge that is collected about the ecosystems under study.
The four projects mention that two groups are going to profit from
the results: (1) keystone players that need information about their
ecosystems and (2) stakeholders that are (planning to be) part of
an ecosystem. Two of the projects focus on one ecosystem and thus
get in-depth knowledge about the platforms, whereas the other
two do a comparative study of different ecosystems to compare
and contrast. The OSEHO has a third target group: to provide
researchers with a framework for establishing ecosystem health
and potentially even to extend the framework with new metrics.

The research methods applied show an interesting mix of qual-
itative and quantitative data gathering and analysis, with a focus
on the latter. Furthermore, the four projects display the use of mul-
tiple data analysis methods, indicating that multiple sources of

http://www.eclipse.org/org/foundation/staff.php
http://www.eclipse.org/org/foundation/reports/annual_report.php

Table 1
Research project survey.

Title P1: Ecosystem health of cloud PaaS providers P2: A study of the health of the Python P3: The Case of the Gnome Community P4: Comparing the ecosystem health of CMSs

ecosystem

Publication Lucassen et al. [19] Hoving et al. [12] Mens and Goeminne [25] van Lingen et al. [27]

Aim Evaluate the health of Platform as a Service Evaluate the health of an open source Validate a framework for open source Establish health of three ecosystems to inform
providers in a cost effective and objective ecosystem and identify typical developer community (health) analysis and provide end-users or niche players of the most
manner collaboration types insight into the Gnome community successful CMS

Sources GitHub. BitBucket, Tigris, and LaunchPad were The Python index of components: http:// The Gnome project list: git.gnome.org/browse/ The component overviews of three
discarded due to data scarcity pypi.python.org ecosystems, Wordpress.org, Joomla.org, and

Drupal.org. Forum posts. Google for google hits
per project, and Google Trends

Method Select platforms and data sources, mining app ~ Download all developers from manifests, split ~ Mining detailed commit data in the Gnome Data gathering through a survey, an

Health frameworks

Indicators

Contribution

Challenges

Discussion

using GitHub API, data preparation, 1% manual
cross validation, some false positives found
(A part of) Crowston

Active contributors: active developers in the
past year, active developers of unique
repositories in the past year, active developers
per segment of time, lines of code added per
period of time. Spin-offs: total repositories,
unique repositories, forks. Interest: number of
followers, unique programming languages,
multi-platform repositories, repositories
updated at least once, active repositories

The research provides a method for quickly
providing insight into both internal and
external stakeholders in a PaaS ecosystem and
its health. Furthermore, it shows how
ecosystem health can be used outside the
traditional ecosystem views

Data filtering, data unification, download count
not working on GitHub. Some components on
GitHub support multiple platforms.
Operationalization of indicators of Crowston
et al. [3], specifically active developers, spin-
offs, interest

Absolute numbers should not be leading,
developments in some smaller ecosystems are
healthy and strong. No financial data available
for each platform. Continuous data gathering

up developer lists, identify relationships
created_by and collaborated_with

Parts of den Hartigh et al., Wynn et al. and
lansiti et al.

Active contributors, number of projects,
number of total project downloads, growth in
number of projects, project connectedness

Provides a snapshot of the Python ecosystem,
which successfully exhibits an increasing
growth in numbers of components added to the
ecosystem. It also discusses how connectedness
could be improved to make the ecosystem
healthier

Expand the work by taking a closer look at the
roles that developers take on (bridgers, lone
wolfs, brokers, etc.). Continuous measurement.
Detailed project data, such as code, must be
retrieved from different sources (SourceForge,
GitHub, etc.) Missing data, even from the
manifest files

More in-depth study needed before a full report
can be given

Community, by analyzing all projects on the
Gnome project sites

Health is not specifically mentioned in the
article

Active contributors, number of authors. KLOC/
time period, contributor activity, number of
projects, project connectedness, variety in roles,
sub-communities, activity division across sub-
communities, do community members
specialize over time

Exemplary analysis of sub-communities,
community members specialize over time,
overall activity appears to be dropping, coding
remains the activity that requires most effort,
although other activities become more
important over a project’s lifetime

Data unification, advanced architecture
developed to approach the problems posed by
distributed data, heterogeneous data, etc.

None

automated scraping tool, and some manual
work.
None

New related projects, active contributors, Up-
to-dateness of projects, “findability” of the
ecosystem, centrality of the platform, market
share analysis, level of contribution per
community user, perceived ecosystem health

A status report on the health of three
ecosystems, ecosystem health # platform
success

Historical data gathering impossible, plethora
of research methods necessary to gain a
balanced view

Hard to compare three somewhat equal
ecosystems, Google search statistics not
always reliable, no historical data

visL

61S1-80S1 (¥10Z) 95 ABojoua] atpmifos pup uoyvuLiofuf /uasunf ‘s

http://pypi.python.org
http://pypi.python.org

S. Jansen/Information and Software Technology 56 (2014) 1508-1519 1515

data are typically used in ecosystem health research. The work of
Mens and Goeminne [25], calling for a generic data collection
and analysis workbench for ecosystem analysis, has an obvious
role here, as the other three projects are using interesting mixes
of web scraping, failing APIs, and manual data gathering. In the
project studying content management systems (CMSs), the data
is validated in part by conducting a survey among niche players
in the CMS ecosystems.

The frameworks that are used for outlining the health research
are mostly developed by the authors themselves. Lucassen et al.
[19] use a part of Crowston’s framework, and Lucassen et al. [12]
refer to the works of lansiti and Levien, den Hartigh et al. and
Wynn. These frameworks can be considered comprehensive, but
not necessarily for the domain of open source ecosystem health.
Furthermore, even though the work of Wynn for instance is com-
prehensive, it is not operationalized, further strengthening the
need for the OSEHO. The OSEHO strongly bases itself on these
frameworks, but can be considered more extensive, because other
works than the ones used in the research projects have been
included in the evaluation as well, such as the work of Wiggins
et al. [30] and that of Haenni et al. [11].

The indicators mostly used are contributors, projects, activity,
relationships between contributors, and interest and are found in
the four research projects. The contributors, projects, and interest
are typically easy to obtain. Contributors are typically gathered
through the manifests of projects, which in turn are gathered from
project lists. Interest is gathered using Google Trends for two of the
research projects and by looking at secondary variables (forks, fol-
lowers, etc.) in the other two research projects. Relationships are
harder to obtain but are typically determined by looking at co-
authorship or collaboration on similar projects and code. Further-
more, it appears that the research projects were strongly influ-
enced by the availability of data: the research design was
typically created with the available data in mind. Please note that
some of the indicators in the projects are operationalized versions
of the metrics in the OSEHO. Take for instance the indicators “up-
to-dateness of projects”, “findability of the platform”, and “central-
ity of the platform” from the project of van Lingen et al. [27]. “up-
to-dateness of projects” is an operationalization of “total number
of active projects”, “findability” is an operationalized version of
“search statistics”, and “centrality of the platform” is an operation-
alization of “core network consistency”. In the OSEHO a degree of
freedom is necessary, as these indicators are just one way of inter-
preting the metrics. Other interpretations are possible, hence there
is not an exact match between the indicators found in the four
research projects and the metrics in the OSEHO. The OSEHO does,
however, encompass the metrics used in the research projects.

The contribution of the work by Lucassen et al. [19] provides a
report on the Cloud providers and the surrounding activities on
GitHub. Furthermore, the work shows how GitHub can be used
to gauge health of commercial or closed ecosystems. The work of
Hoving et al. [12] provides insight into the Python ecosystem and
attempts to provide stakeholders with tools to increase connectiv-
ity. The work of Mens and Goeminne [25] gives an insightful view
of the Gnome ecosystem, with a specific focus on contributor roles
(such as translation, design, and coding activities) and attempts to
provide a standard workbench for open source ecosystem analysis.
The project of van Lingen et al. [27] compares the health of the eco-
systems of three large open source CMSs and illustrates that eco-
system health (Drupal is the healthiest) does not equate platform
success (Wordpress is more successful by far). The works succeed
in providing ecosystem stakeholders with new insights into their
communities. The works presenting new methods for data analysis
are most interesting for the academic community, such as using
Github for analyzing somewhat closed ecosystems [19] or intro-
ducing a framework for open source analysis [25].

What these projects show is a plethora of approaches in obtain-
ing data on ecosystem health and subsequently analyzing it. The
OSEHO aims to bring these approaches together and put them into
context. These approaches furthermore illustrate the use and
applicability of the evaluated aspects in the OSEHO and indicate
that the OSEHO is applicable and useful for those aspects.

5.2. Data sources for open source ecosystem health

There are roughly three types of data sources for performing
ecosystem health research. First, there are the project sites. Project
sites are sites where all data about an open source project are col-
lected, typically including the source code. Project sites are typi-
cally hosted by project hosting services, such as SourceForge,
Github, BitBucket, or Tigris. Many of these project hubs are well
aware of the wealth of data that is held in their databases. GitHub,
for instance, has an advanced API that can be queried by anyone
and SourceForge provides their data as one downloadable data-
base, that can be reused for research purposes.

The second type of data source are ecosystem hubs. Such hubs
contain essential project indexes, such as RubyForge’s gem index,
the Python egg index, the Joomla Component index, and many oth-
ers. These sources are typically managed by a keystone organiza-
tion within the ecosystem and are an excellent starting point for
any ecosystem health project. Please note that the ecosystem pro-
ject lists can also be collected by querying the project sites, but this
introduces new challenges in regards to the elimination of false
positives (see Section 6).

The third type of source are aggregation sites, where aggregated
information is stored about an ecosystem, or even about all ecosys-
tems. Ohloh.net stands out as one of the sites where information
about as many open source projects as possible is collected.
Another interesting source in this regard is StackOverflow, a ques-
tions-and-answers community for developers. One example of an
application of data analysis of StackOverflow is the language pop-
ularity index, developed at Delft University.*

Besides these sources that can be scraped, downloaded, analyzed,
and called upon with an AP], it is always possible to perform a devel-
oper or contributor survey. This has proven successful in several eco-
system research projects, such as the CMS project [27] or a project
into clusters in the Ruby ecosystem [26], where contributors were
asked whether they are aware of their place in a cluster of contribu-
tors or not, and how these clusters were shaped or formed.

Three of the projects focus on project indexes created by the key-
stone players. The keystone obviously can play a crucial role here:
without such indexes the community does not have a central gather-
ing place for ecosystem participants. The fourth project has focused
on Github as the central repository, after discarding several others,
and used its search results as the way to getting related projects.

Data sources of high quality are essential for ecosystem health
studies, on three levels. On the first level, there is a need for access
to the source code of projects, in a generic way. The API of Git-
Hub.com, for instance, is an excellent point of access for ecosystem
researchers wishing to delve deeper into source code, for instance
to study API adoption or code quality. On the second level, project
indexes are required that summarize which projects belong to a
certain ecosystem. These lists do not necessarily need to be com-
plete, but provide starting points for researchers in ecosystem
health. On the third level, data aggregation sites, such as Ohloh.net,
provide researchers with high-quality secondary data, enabling for
instance the study of developer migratory patterns and developer
productivity across ecosystems. In the future it is expected for
these secondary databases to flourish, such as for instance the

4 http://langpop.corger.nl/.

http://langpop.corger.nl/

1516

Table 2
Data sources for collecting metrics.

S. Jansen/Information and Software Technology 56 (2014) 1508-1519

Metric/source

Project sites

Ecosystem hub

Aggregation sites

Productivity

New related projects

Downloads of new projects

Added knowledge about the
ecosystem

Events

KLOC added

New tickets

New downloads

Knowledge and artefact
creation

Mailing list responsiveness

Bug fix time

Spin-offs and forks

New partnerships

New patents

Usage

Robustness

Number of active projects

Project connectedness/
Cohesion

Core network consistency

Outbound links to other
SECOs

Switching costs to other
SECOs

Partnerships and
embeddedness

Organizational maturity

Commercial patronage

Capital contributions and
donations

Contributor satisfaction

Active contributors

Contributor ratings and
reputation

Multi-homers

Contributor connectedness

Interest

Market share

Switching costs
User loyalty and usage

User satisfaction or ratings
Artifact quality

Niche creation
Variety in projects

Variation in contributor
type

Variation in project
applications

Supported natural
languages

Variety in supported
technologies

Variety in development
technologies

Multiple markets

Download page

Software repository

Ticketing system

Download page

Software repository, content management
system

Mailing list

Bug trackers

Project repository

Information pages, code dependencies

Software operation knowledge

Information pages, code dependencies

Code dependencies

Partnerships, content management system
Partnerships, content management system

Developer survey
Repository
Project contribution size

Search engines, page hits

Content management system, end-user
surveys

End-user and developer surveys

End-user and developer surveys, software
operation knowledge

End-user surveys

Code quality in repositories

Contributor data, contributor surveys

Project dependencies, content management
system
Content management system, repository

Project dependencies, content management
system

Project dependencies, content management
system, repository

Project dependencies, content management
system

Project indexes
Content management system, books, wikis

Content management system

Projects history
Partnership model
Developer survey

Project indexes
Partnership model

Partnership model
Partnership model

Developer survey
Partnership model

Content management system, partnership model,
rules and regulations

Partnership model

Partnership model, content management

Developer survey
Repositories, developer survey
Contributor aggregation

Search engines, page hits
Content management system, end-user surveys

End-user and developer surveys
End-user and developer surveys

End-user surveys

Project indexes, content management system,
multi-homing
Contributor data, contributor surveys

Project dependencies, content management

system

Project dependencies, content management
system

Project dependencies, content management
system, end-user surveys

Project indexes

Contributions

Bug trackers
Repository history

Explicitness ecosystem

Repositories

Rating systems, contributor
aggregation

Contributor aggregation
Contributor aggregation

Code inclusion in other projects
and ecosystems

Contributor data

GHTorrent project [10], which is attempting to collect and main-
tain as much data from Github as possible, without having to stress
the Github API and without running the risk of losing historical
information. Recently, the GHTorrent project has become redun-
dant, as Github is now making its data available through the Goo-
gle BigQuery initiative on the GitHub archives site.”

5 http://www.githubarchive.org/.

In Table 2 we have inventoried the data sources for each of the
metrics, categorized by the different levels on which data is gath-
ered in ecosystems. The table shows that a large variation of data
sources is required and available for measuring open source eco-
system health. The main sources are the repository, developer
aggregate data (such as the developer’s other projects, characteris-
tics, and contribution size), the project indexes, the content man-
agement systems of the ecosystem hub and its projects, and any
supporting systems for a project (bug trackers, mailing lists, etc.).

http://www.githubarchive.org/

S. Jansen/Information and Software Technology 56 (2014) 1508-1519 1517

One example is market share. To get market share of a project, we
need to do end-user surveys and collect the knowledge that is
already available. On the ecosystem level, we can also do end-user
surveys and collect information that is already available, such as
market reports, open source evaluations, and other platform popu-
larity data. Finally, on an aggregate level we can analyze, using
source code and manifest analysis, how frequently a project is
required and used by other projects.

6. Repository mining research challenges

The research challenges from the projects are listed in Table 1
and are collected and summarized to form common research chal-
lenges into a research agenda. Each of the terms in bold can be con-
sidered a challenge for any new ecosystem (health) study that
involves repository mining. The challenges are split into data selec-
tion challenges and data preparation and analysis challenges.

6.1. Data selection challenges

When starting a research project for the analysis of open source
software ecosystems, the first step involves, after formulating a
research goal, data selection. Based on the available resources, a
project starts by selecting the data that is relevant to reach the
research goal. The research projects report the following chal-
lenges in this research phase.

All projects report on the absence of data, such as missing pro-
ject manifests or missing lists of authors. Such missing data forces
researchers to remove data items from data sets, thereby reducing
reliability of the final conclusions. The problem of missing data is
especially painful when researchers wish to compare projects
(apples and oranges). It can be extremely hard to compare, for
instance, the health of two software projects based on mailing list
response time, when one of the projects does not have a mailing
list. Another example is given by forks in projects, i.e., when a
developer decides to copy the source code branch and continue a
new version. These forks are uncommon in subversion projects,
not made explicit and typically hard to merge. For a versioning sys-
tem like Git, however, forks are one of the most common ways to
develop new features, so comparing the number of forks of a sub-
version project and of a Git project is pointless.

Besides it being hard to compare projects with different data, it
is even harder when comparing ecosystems. If one of the ecosys-
tem keystones stores different meta-data about projects than a
stakeholder from another ecosystem, comparison becomes nigh
impossible. Looking at Python versus Ruby, for instance, it is
observed that Python reports on the number of downloads per
component (egg), whereas Ruby does not maintain such a metric
reliably, as many of its components (gems) are hosted on Github,
where the download count metric is unreliable.

Another problem in the problem realm of missing data, is the
lack of historical data. Establishing the health of an open source
ecosystem, for instance, becomes much more interesting when
looking at a developmental picture, using timelines, historical
download data, commit data, etc. This data is, however, rarely
available as project sites tend to store only current data. There
are countermovements against this loss of information, such as
(again) the GHTorrent project [10], which stores historical data
about the event logs from GitHub, knowledge that would other-
wise be lost.

Another problem for data selection is project findability and
ecosystem transparency. When an ecosystem does not maintain
a central index of projects, it is almost impossible to say anything
sensible about the number of projects that are related to the eco-
system. A similar problem is that many of these projects are

managed opaquely, i.e., by one organization or developer that does
not share its source code. This is perhaps the biggest weakness of
the Platform Comparison project (project 1), as some of the plat-
forms may typically be used by more closed organizations (i.e.,
partners of Microsoft that develop for the Azure cloud), thereby
making a large part of the ecosystem hidden.

A search challenge frequently mentioned is the elimination of
false positives: as lists of open source projects are collected, for
instance from Github, these projects are typically obtained by
running a search query on the GitHub site. Several of the hits
may concern projects outside of the desired scope, but these still
mention the search terms. Or, in the case of Lucassen et al. [19],
some open source projects were mentioned that can be used for
several of the platforms and thus are part of the analyses for both
the platforms.

6.2. Data preparation and analysis challenges

The four projects report on incorrect data, with perhaps the
most emphasis on the missing of the number of downloads from
GitHub, which is available through the API, but is a field that is
incorrectly filled in. As Github and its API are relatively young this
is not surprising, but has hampered several of the projects. In the
future, an increase in data quality would strengthen ecosystem
health research and we hope that open source project authors take
the time to validate the data that is published about projects
online.

A similar challenge is that of data clean-up and preparation.
This may, for instance, involve splitting up contributor names
and identities from the author field in a manifest (e.g., “Google
Python Team and Guido”). Although the technical challenge of
splitting up such fields by keywords ‘and’ and *, is trivial, the next
step of identifying and gathering of identities is much more chal-
lenging. Another problem that arises here is the challenge of data
merging. It is impossible without extra information to for instance
determine that ‘DHH@37signals.com’ is the same as ‘david@37sig-
nals.com’. The good news is that initiatives such as Ohloh.net are
quickly becoming central tomes of knowledge where data is united
on open source projects, contributors, and their supporting
organizations.

In the domain of data analysis, a common research challenge is
found, being the cross validation of results from different
research methods. In the project on CMSs, for instance, a survey
was held amongst contributors about the popularity of the CMS.
The survey data was then used in the analysis to strengthen the
quantitative data, creating alignment challenges between the
quantitative and qualitative data.

Summarizing, we can make explicit the following research chal-
lenges in this field:

1. It is hard to select the right data to support the metrics.

2. Some data may be unavailable, such as contributor lists.

3. It is hard to compare ecosystems, especially when the fun-
damental data differs.

4. There may be a lack of historical data, as data sources fre-
quently do not store data over time.

5. There may not be a project index, making it harder to col-
lect all related projects.

6. The ecosystem may be less transparent, when it typically is
operated in a commercial domain.

7. It is hard to identify whether a project has been created
specifically for an ecosystem or simply mentions it in the
project description.

8. Some data may be incorrect, for instance due to faulty data
collection on the data collector’s side.

1518 S. Jansen/Information and Software Technology 56 (2014) 1508-1519

9. As there are not yet uniform storage formats for projects,
contributors, etc., there are many data clean-up and prepa-
ration challenges.

10. Itis hard to merge data from different sources, such as two
identities of contributors.

11. It is hard to cross validate results from different research
methods.

For each future project in ecosystem health we recommend that
the researchers specifically address these challenges, to provide
insight into their measures and methods.

7. Discussion

The framework is evaluated using the research projects
described in the previous sections. There are currently few works
on ecosystem health available and the selection of just four
research projects is somewhat meager. As these research projects
do not fully cover the metrics in the framework, the work cannot
be considered completely evaluated. The OSEHO can be further
evaluated in the future with more projects that study ecosystem
health. The framework, however, is the most complete framework
for open source ecosystem health assessment and its contribution
lies in the fact that it is the first comprehensive overview of health
metrics. Two options are proposed for future evaluation: the use of
experts to determine the comprehensiveness of the framework and
more case studies illustrating the application of the framework.

The OSEHO is large and comprehensive, but not overly elegant.
An interesting question is whether such a framework can be
designed to deliver one or a small subset of metrics that provide
insight into health. It has been suggested that developer satisfac-
tion is one of the most important metrics in project health. Lakhani
and Wolf [18] found the three main motivations of open source
developers to be “enjoyment-related intrinsic motivations in the
form of a sense of creativity, extrinsic motivations in form of pay-
ment, and obligation/community-related intrinsic motivations”.
Crowston and Scozzi [4] also refer to the personal recognition
and possible later employment as an important factor in marshal-
ling competencies. Simultaneously, growth in lines of code is highly
misleading: a project’s quality may improve significantly when a
large portion of dead code is removed, when duplicates are
replaced, and when a project is significantly refactored. It is consid-
ered part of the future work to establish what metrics can be col-
lected to provide a quick insight into ecosystem health, that is also
comparable to other ecosystems. Another part of this initiative
could be to establish an information source that provides health
metrics for as many open source ecosystems as possible, to provide
stakeholders with quick insight into the health of the ecosystem
they are interested in.

Not all factors in the OSEHO are completely defined: with some
of them there is room left for interpretation. Factors such as market
share, switching costs to alternatives, and artifact quality, it is up to
the researcher to define how these factors are translated to actual
metrics. As this work is the first attempt to an OSEHO, this is not a
problem, but it will in the future have malignant effects on compa-
rability of health metrics.

This research attempts to abstract from the project level and
bring project level metrics to the ecosystem level. This is ambi-
tious: as projects within one ecosystem use different repository
management tools, different tools to support developers, and have
wildly varying levels of activities, it is hard to find complete data
sets and baseline measurements. The four projects, however, over-
come these challenges. The platform health project of Lucassen
et al. [19], for instance, assumes it to be true that there is missing
information, but uses several data sources and claims that

completeness of the data is not essential to make predictions about
the most successful platform. We hope that future attempts are
made at gathering and maintaining complete data sets, to make
sure no data is lost for measuring ecosystem health and
development.

7.1. Metrics evaluation

The metrics in the OSEHO are of different levels of practicality:
some are highly abstract (organizational maturity) whereas others
are concrete (number of new projects). A deliberate degree of free-
dom is necessary. For example, organizational maturity of project
organizations can be measured in different ways and there is no
consensus yet on how to do so. The OSEHO in this case provides
insight into possible metrics, but does not completely define the
way in which such a metric could be operationalized. The opera-
tionalization of these metrics can be seen as future work and future
research challenges.

Several of the metrics open up debate about whether they are
beneficial or may be detrimental in some cases. One could argue
that forking a project is not a positive development in an ecosys-
tem, as a fork may be a sign of a split in the community. We will
argue that forks are a sign of productivity, especially when they
occur in large numbers surrounding a project and can be seen as
new projects in a lively ecosystem. We do acknowledge, however,
that a fork in the main project or platform an ecosystem is based
on, may be detrimental to its development.

Another metric up for debate is a strongly connected core of
developers: in an open source project it may be a sign of a healthy
project, but if that core starts to reign without democracy, the pro-
ject may soon starve due to absence of qualified consenting devel-
opers. This indicates that there are cases in which a strongly
connected core is not healthy, but in these cases there are other
indicators that provide more insight into the situation. If a highly
cohesive core, for instance, has little outbound links to other eco-
systems and there is little variety in the ecosystem, the ecosystem
players should get worried. In most cases, however, a strong core
may provide direction and vision in an ecosystem, which is a sign
of a robust ecosystem.

van Lingen et al. [27] find that the Wordpress ecosystem has the
larger market share, even though Drupal is found to have the most
healthy ecosystem. The finding that the ecosystem is healthy even
though the market share is not does not invalidate the OSEHO in
any way: it is simply a sign that the Wordpress coordinators have
chosen a different way to penetrate the market for content man-
agement systems, using a highly commercial approach and per-
haps also because Wordpress is directed at blogs, whereas
Joomla and Drupal are traditionally used for somewhat more com-
plex web applications. Ecosystem health does not say anything
about commercial success: a more healthy ecosystem simply indi-
cates that the ecosystem is gaining more developers, activity, and
new projects compared to another. What can be said is that a more
healthy ecosystem in a set of ecosystems of similar size and in the
same domain, is the best choice when choosing to join or invest in
an ecosystem. The strategic decisions that are made by an ecosys-
tem coordinator using governance mechanisms (entrance barriers,
tenancy prices, possibility of multi-homing, etc.) determine the
success of an ecosystem and typically also the success of its coor-
dinating party [1].

In the work of West and Wood [29], the authors discuss the
demise of the Symbian ecosystem and defend that although the
platform was technologically apt, the business models applied in
the ecosystem did not stimulate further growth of the ecosystem.
One of the main and most important points made by West and
Wood is that the business model of the platform that is central
to the ecosystem must be designed as such, that profits and

S. Jansen/Information and Software Technology 56 (2014) 1508-1519 1519

revenues made from the platform should be re-invested into the
platform and surrounding components. One could defend that
Symbian was a healthy ecosystem, but was finished off by external
factors. As Symbian is a closed-source platform, it is hard to bring
these findings to the evaluation of open source platforms, but it is
surprising to see that a healthy ecosystem can still be overtaken by
a superior ecosystem so quickly. The main recommendation in the
context of the OSEHO is to track user loyalty and active developers,
as they are the first ones to indicate that another platform or eco-
system is more attractive.

7.2. Conclusion and future work

This paper provides the Open Source Ecosystem Health Opera-
tionalization, a framework that is used to establish the health of
an open source ecosystem. It is unique because it abstracts from
the project level. Its application is explained in detail, illustrated
using four research projects from literature, and possible chal-
lenges researchers may face are discussed in-depth. The operation-
alization provides ecosystem researchers with a foundation under
their ecosystem health work and they no longer need to start from
scratch when establishing the health of an open source ecosystem.
To evaluate the framework further, more studies of software eco-
systems and their health must be performed. Furthermore, using
interviews the framework can further be evaluated by experts.

This article is a call to action for ecosystem health researchers.
First, there is a need for historical data that, if not tracked, will get
lost over time. Secondly, data quality must constantly be improved,
as current data sources are not always accurate. Thirdly, more
studies are required in this important field to illustrate how easily
data can be gathered and how effectively the data can be used in
strategic decision making about an open source ecosystem.

Finally, case studies are an excellent way to further evaluate the
OSEHO. There are several case approaches that can be taken. First,
it can be attemted to collect all metrics for one particular case.
Doing so enables reflection on the framework, for instance in
regards to how hard it is to collect certain metrics, analogue to
how den Hartigh and his team commented on their ecosystem
health operationalization for commercial ecosystems [6]. Secondly,
ecosystem participants’ observations and perceptions of a develop-
ing ecosystem could be compared with the metrics found in the
OSEHO. Such a comparison can be used to evaluate which metrics
give a realistic image of the health of an ecosystem and which met-
rics may not be as significant or even contradictory. Thirdly, long-
titudinal studies of ecosystems [24], including its metrics, can
evaluate the use, effectiveness, and predictive power of the OSEHO.

References

[1] A. Baars, S. Jansen, A framework for software ecosystem governance, in:
Software Business, Springer, 2012, pp. 168-180.

[2] O. Barbosa, R. Santos, C. Alves, C. Werner, S. Jansen, A systematic mapping
study on software ecosystems through a three-dimensional perspective, in: S.
Jansen, M. Cusumano, S. Brinkkemper (Eds.), Software Ecosystems: Analyzing
and Managing Business Networks in the Software Industry, Edward Elgar
Publishers, 2013.

[3] K. Crowston,]. Howison, H. Annabi, Information systems success in free and
open source software development: theory and measures, Software Process:
Improvement and Practice 11 (2) (2006) 123-148.

[4] K. Crowston, B. Scozzi, Open source software projects as virtual organisations:
competency rallying for software development, IEEE Software 149 (1) (2002)
3-17.

[5] M. Cusumano, Staying Power: Six Enduring Principles for Managing Strategy
and Innovation in an Uncertain World (Lessons from Microsoft, Apple, Intel,
Google, Toyota and More), Oxford University Press, 2012.

[6] E. den Hartigh, M. Tol, W. Visscher, The health measurement of a business
ecosystem, in: S. Jansen, M. Cusumano, S. Brinkkemper (Eds.), Software
Ecosystems: Analyzing and Managing Business Networks in the Software
Industry, Edward Elgar Publishers, 2013.

[7] D. Dhungana, I. Groher, E. Schludermann, S. Biffl, Guiding principles of natural
ecosystems and their applicability to software ecosystems, in: S. Jansen, M.
Cusumano, S. Brinkkemper (Eds.), Software Ecosystems: Analyzing and
Managing Business Networks in the Software Industry, Edward Elgar
Publishers, 2013.

[8] J. Gamalielsson, B. Lundell, B. Lings, The nagios community: an extended
quantitative analysis, in: Open Source Software: New Horizons, Springer, 2010,
pp. 85-96.

[9] J. Gamalielsson, B. Lundell, B. Lings, Responsiveness as a measure for assessing
the health of oss ecosystems, in: Proceedings of the 2nd International
Workshop on Building Sustainable Open Source Communities (OSCOMM
2010), 2010, pp. 1-8.

[10] G. Gousios, The ghtorent dataset and tool suite, in: Proceedings of the Tenth
International Workshop on Mining Software Repositories, IEEE Press, 2013, pp.
233-236.

[11] N. Haenni, M. Lungu, N. Schwarz, O. Nierstrasz, Categorizing developer
information needs in software ecosystems, in: Workshop on Ecosystem
Architectures, 2013, pp. 1-5.

[12] R. Hoving, G. Slot, S. Jansen, Python: characteristics identification of a free open
source software ecosystem, in: 2013 7th IEEE International Conference on
Digital Ecosystems and Technologies (DEST), IEEE, 2013, pp. 13-18.

[13] M. Iansiti, R. Levien, The Keystone Advantage: What the New Dynamics of
Business Ecosystems Mean for Strategy, Innovation, and Sustainability,
Harvard Business School Press, 2004.

[14] M. lansiti, R. Levien, Strategy as ecology, Harvard Business Review 82 (3)
(2004) 68-78.

[15] S. Jansen, S. Brinkkemper, M. Cusumano, Software Ecosystems: Analyzing
and Managing Business Networks in the Software Industry, Edward Elgar,
2013.

[16] S.Jansen, S. Brinkkemper, J. Souer, L. Luinenburg, Shades of gray: opening up a
software producing organization with the open software enterprise model, J.
Syst. Software 85 (7) (2012) 1495-1510.

[17] S. Jansen, A. Finkelstein, S. Brinkkemper, A sense of community: a research
agenda for software ecosystems, in: 31st International Conference on Software
Engineering, New and Emerging Research Track, 2009.

[18] K. Lakhani, R. Wolf, Why Hackers Do What They Do: Understanding
Motivation and Effort in Free/Open Source Software Projects, MIT Press,
Cambridge, 2005.

[19] G. Lucassen, K. v. Rooij, S. Jansen, Ecosystem health of cloud paas providers, in:
Proceedings of the International Conference on Software Business, Springer,
Berlin Heidelberg, 2013.

[20] B. Lundell, B. Forssten,]. Gamalielsson, H. Gustavsson, R. Karlsson, C.
Lennerholt, B. Lings, A. Mattsson, E. Olsson, Exploring health within oss
ecosystems, in: Proceedings of the First International Workshop on Building
Sustainable Open Source Communities, Tampere University of Technology,
2009.

[21] M. Lungu, R. Robbes, M. Lanza, Recovering inter-project dependencies in
software ecosystems, in: Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, ACM, 2010, pp. 309-312.

[22] K. Manikas, K.M. Hansen, Software ecosystems-a systematic literature review,
J. Syst. Software 85 (2012) 12941306.

[23] K. Manikas, K.M. Hansen, Reviewing the health of software ecosystems: a
conceptual framework proposal, in: Proceedings of the International
Workshop on Software Ecosystems, 2013.

[24] T. Mens, M. Claes, P. Grosjean, A. Serebrenik, Studying evolving software
ecosystems based on ecological models, in: Evolving Software Systems,
Springer, Berlin Heidelberg, 2014, pp. 297-326.

[25] T. Mens, M. Goeminne, Analysing ecosystems for open source software
developer communities, in: S. Jansen, M. Cusumano, S. Brinkkemper (Eds.),
Software Ecosystems: Analyzing and Managing Business Networks in the
Software Industry, Edward Elgar Publishers, 2013.

[26] S.Syed, S. Jansen, On clusters in open source ecosystems, in: Proceedings of the
International Workshop on Software Ecosystems, 2013.

[27] S. van Lingen, A. Palomba, G. Lucassen, On the software ecosystem health of
open source content management systems, in: the Proceedings of the 5th
Workshop on Software Ecosystems, 2013.

[28] J. Waltl, J. Henkel, C.Y. Baldwin, Ip modularity in software ecosystems: how
sugarcrms ip and business model shape its product architecture, in: Software
Business, Springer, 2012, pp. 94-106.

[29] J. West, D. Wood, Evolving an open ecosystem: the rise and fall of the symbian
platform, Advances in Strategic Management 30 (2013) 27-67.

[30] A. Wiggins,]. Howison, K. Crowston, Heartbeat: measuring active user base
and potential user interest in floss projects, in: Open Source Ecosystems:
Diverse Communities Interacting, 2009, 94-104.

[31] D. Wynn, Assessing the health of an open source ecosystem, in: Emerging Free
and Open Source Software Practices, Idea Group Publishing, 2007.

http://refhub.elsevier.com/S0950-5849(14)00087-1/h0050
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0050
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0050
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0055
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0055
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0055
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0055
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0055
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0055
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0055
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0055
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0055
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0060
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0060
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0060
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0065
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0065
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0065
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0070
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0070
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0070
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0070
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0075
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0075
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0075
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0075
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0075
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0075
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0075
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0075
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0075
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0080
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0080
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0080
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0080
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0085
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0085
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0085
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0085
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0090
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0090
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0090
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0090
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0095
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0095
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0095
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0095
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0100
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0100
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0105
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0105
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0105
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0105
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0110
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0110
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0110
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0115
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0115
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0115
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0115
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0120
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0120
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0120
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0120
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0125
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0125
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0125
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0125
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0130
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0130
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0135
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0135
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0135
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0135
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0140
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0140
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0140
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0140
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0140
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0140
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0140
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0140
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0145
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0145
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0145
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0145
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0150
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0150
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0155
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0155
http://refhub.elsevier.com/S0950-5849(14)00087-1/h0155

	Measuring the health of open source software ecosystems: Beyond the scope of project health
	1 Introduction
	2 Literature about ecosystem health
	3 Research approach
	4 Open Source Ecosystem Health Operationalization (OSEHO)
	4.1 Creating the OSEHO
	4.2 Network level
	4.3 Project level
	4.4 Analysis method
	4.5 Applying the method and OSEHO in practice

	5 Analysis of the research projects
	5.1 Aims, research methods, frameworks, indicators, and contributions
	5.2 Data sources for open source ecosystem health

	6 Repository mining research challenges
	6.1 Data selection challenges
	6.2 Data preparation and analysis challenges

	7 Discussion
	7.1 Metrics evaluation
	7.2 Conclusion and future work

	References

