
Information and Software Technology 55 (2013) 1–17
Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
A systematic review of software robustness

Ali Shahrokni ⇑, Robert Feldt
Department of Computer Science & Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
a r t i c l e i n f o

Article history:
Received 2 November 2011
Received in revised form 31 May 2012
Accepted 4 June 2012
Available online 15 June 2012

Keywords:
Systematic review
Robustness
Software robustness
0950-5849/$ - see front matter � 2012 Elsevier B.V. A
http://dx.doi.org/10.1016/j.infsof.2012.06.002

⇑ Corresponding author.
E-mail addresses: ali.shahrokni@chalmers.se (A. Sh
a b s t r a c t

Context: With the increased use of software for running key functions in modern society it is of utmost
importance to understand software robustness and how to support it. Although there have been many
contributions to the field there is a lack of a coherent and summary view.
Objective: To address this issue, we have conducted a literature review in the field of robustness.
Method: This review has been conducted by following guidelines for systematic literature reviews.
Systematic reviews are used to find and classify all existing and available literature in a certain field.
Results: From 9193 initial papers found in three well-known research databases, the 144 relevant papers
were extracted through a multi-step filtering process with independent validation in each step. These
papers were then further analyzed and categorized based on their development phase, domain, research,
contribution and evaluation type. The results indicate that most existing results on software robustness
focus on verification and validation of Commercial of the shelf (COTS) or operating systems or propose
design solutions for robustness while there is a lack of results on how to elicit and specify robustness
requirements. The research is typically solution proposals with little to no evaluation and when there
is some evaluation it is primarily done with small, toy/academic example systems.
Conclusion: We conclude that there is a need for more software robustness research on real-world, indus-
trial systems and on software development phases other than testing and design, in particular on require-
ments engineering.

� 2012 Elsevier B.V. All rights reserved.
Contents
1. Introduction . 2
2. Related work. 2
3. Research methodology . 3
3.1. Research questions . 3
3.2. Sources of information . 3
3.3. Search criteria . 4
3.4. Study selection . 4
3.5. Data extraction and synthesis . 4
3.5.1. Selection and extraction validity . 5
3.5.1.1. Validity control I . 5
3.5.1.2. Validity control II. 5
3.6. Threats to validity . 6

4. Results and analysis . 6
4.1. Phase focus of studies . 6

4.1.1. Requirements . 6
4.1.2. Analysis . 7
4.1.3. Design & architecture . 7
4.1.3.1. Wrapper . 8
4.1.4. Verification and validation. 8
4.1.4.1. Robustness benchmarks . 8
ll rights reserved.

ahrokni), robert.feldt@ chalmers.se (R. Feldt).

http://dx.doi.org/10.1016/j.infsof.2012.06.002
mailto:ali.shahrokni@chalmers.se
mailto:robert.feldt@chalmers.se
http://dx.doi.org/10.1016/j.infsof.2012.06.002
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

2 A. Shahrokni, R. Feldt / Information and Software Technology 55 (2013) 1–17
4.1.4.2. Fault injection . 8
4.1.4.3. Automated robustness testing . 9
4.1.5. Other work . 9
4.2. System focus . 10
4.3. Quality of research/contribution . 10
4.3.1. Research type . 10
4.3.2. Contribution facet. 10
4.3.3. Evaluation . 11

5. Discussion. 12
6. Conclusion . 13

References . 13
1. Introduction

As the importance and complexity of software systems increase,
both software practitioners and researchers emphasize systematic
and effective development methods. A key aspect of these methods
is that they help maintain and increase the quality of the resulting
software. Software quality is a multi-faceted concept and can be
conceptualized and measured using many different quality attri-
butes [22]. For critical software systems quality attributes dealing
with dependability and reliability take center stage [13].

Robustness is one such important quality attribute which is
defined by the IEEE standard glossary of software engineering ter-
minology [1] as:

The degree to which a system or component can function
correctly in the presence of invalid inputs or stressful environ-
mental conditions.

In one of our previous studies [147] we identified gaps in the
state of practice for specifying and assuring software quality. An
important gap we identified was the lack of systematic ways to
specify quality attributes such as robustness in many companies.
One of our initial steps to address this gap was to search in the
academic literature for ways to specify, improve and ensure
robustness. Since our informal searches found only a limited num-
ber of results we here extend our method to a more systematic
review of the existing literature on software robustness.

An obvious choice for this purpose was to follow the guidelines
on conducting systematic literature reviews presented in [90]. A
systematic review goes through all available literature regarding
a specific research question or focus area and classifies the results
following clear guidelines and steps. Systematic reviews consist of
three main phases: planning, conducting, and reporting the review.
Although this paper presents our findings from performing a
systematic review, to present the results in a more clear and
understandable manner, we decided to adopt some of the practices
used for systematic mapping to visualize and classify the results of
our review.

In this paper we discuss the results of a systematic literature re-
view we performed on software robustness. The objectives of this
study are to find the existing literature in the field and classify
them according to their phase focus, system focus, and quality of
studies. Quality of the studies was measured based on research
contribution type (contribution facet), type of research and type,
and strength of evaluation. Since the need to conduct this study
was identified in an industrial project, an important factor for
the studies were the type of evaluation performed, and whether
they were done in an industrial setting. This measure is incorpo-
rated to evaluate the usability and validity of the studies in the
industrial context.

We continue the paper by presenting related works in Section 2.
Section 3 presents the research methodology we used to achieve
our objectives, together with the results from the planning and
conducting phases of the review. Section 4 reports the results from
performing the review. The results are presented in a structure
based on our research questions. In Section 5 we discuss and
analyze the results to identify gaps and strengths in the state of
knowledge. Finally, Section 6 gives our conclusions about the pre-
sented results and what they imply.

2. Related work

There are no previous reviews or systematic reviews on the sub-
ject of robustness. However, there is a review in the field of quality
attributes that can be mentioned here. A short but well known
review on non-functional (quality) requirements was made by
Chung et al. [34]. This study discusses quality attribute from a
general perspective. The paper presents different definitions of
software quality and quality requirements. It continues by present-
ing different classifications of quality requirements, which leads us
to the ISO 9126 standard for classifying quality requirements. ISO
9126 divides quality requirements into main categories of function-
ality, realiability, usability, efficiency, maintainability, and portability.
The paper also discusses different methods for specifying quality
requirements. An important artifact in this regards is the IEEE stan-
dard 830 about recommended practices for software requirements
specification.

Another concept that needs to be discussed in this section is
software robustness. IEEE standard defines robustness as [1]:

The degree to which a system or component can function cor-
rectly in the presence of invalid inputs or stressful environmen-
tal conditions.

It is not unusual to see robustness confused with safety.
Although in many cases a more robust system is a safer system
but they do not have any direct connection. Robustness looks at
the system’s response to faulty input or environmental condition
while safety focuses on avoiding the system to harm the environ-
ment, economy or health of people.

Robustness is often considered a quality attribute for achieving
higher dependability in systems. Dependability is an ‘umbrella’,
‘integrative’ concept having multiple attributes [99]. Formally it
and its basic sub-concepts are defined as [13]:

The ability to deliver service that can justifiably be trusted in a
software system.

Dependability is the integrate of these basic attributes: avail-
ability (readiness for correct service), reliability (continuity of cor-
rect service), safety (absence of catastrophic consequences on the
user (s) and the environment), confidentiality (absence of unautho-
rized disclosure of information), integrity (absence of improper sys-
tem state alterations), and maintainability (ability to undergo
repairs and modifications) [13].

Avizienis et al. defines robustness as dependability with respect
to erroneous input [13]. However, robustness is not considered a

1 www.isiknowledge.com.
2 www.engineeringvillage2.com.
3 www.ieeexplore.ieee.org.
4 www.portal.acm.org.

A. Shahrokni, R. Feldt / Information and Software Technology 55 (2013) 1–17 3
main attribute of dependability, but is characterized as a secondary
and specializing attribute [13]:

An example of specializing secondary attribute is robustness, i.e.
dependability with respect to external faults, that characterizes
a system reaction to a specific class of faults.

Thus, it seems that robustness can either be seen as a specializ-
ing attribute within the more general concept of dependability, or
it can be seen as an extension to the concept of dependability to
the situation of invalid input or stressful environment.

Common to several uses of the term robustness is that a system
should show ‘acceptable’ behavior in spite of exceptional or unfore-
seen operating conditions [50]. One task of requirements on robust-
ness can be to specify different levels of acceptable behavior of the
system. This is related to graceful degradation of a system, which
means that the system can deliver parts of its originally intended
behavior or function despite erroneous operating conditions.

3. Research methodology

In this section we describe the methodology of a systematic re-
view based on guidelines from [90]. We also discuss the research
questions, results from the planning and conducting phases of
the review, and the threats to validity.

Systematic reviews were first presented to software engineer-
ing by Kitchenham [89] and have since gained an increasing
popularity for conducting literature reviews in the field
[155,5,82,47,48,92]. The goal of a systematic review is ‘‘to identify,
evaluate, interpret all available research relevant to a particular re-
search question, or topic area, or phenomenon of interest. Individ-
ual studies contributing to a systematic review are called primary
studies; a systematic review is a form of a secondary study’’ [89].

Systematic reviews are conducted to:

� summarize the existing evidence about a topic
� identify gaps in current research
� provide background to position new research activities

This review is based on the guidelines specified in [21,90,89].
Parts of the structure we used were inspired by other systematic
reviews [49,106].

As discussed in [90], during the planning phase, the researchers
identify the objectives of the review and develop a review protocol
that specifies every step in detail. Then, they use the protocol to
conduct each step of the review. The steps here are: to identify
and select primary studies in the subject, extract data from the
studies, assess the quality of the studies, and synthesize data based
on the included studies. The last step is reporting where the
researchers write and evaluate the report and draw conclusions
based on the results.

As discussed in the introduction, we identified the need to
conduct a systematic review on the basis of the results from
[147] and the need of industry to have a better understanding of
the concept of robustness. Furthermore, most academic works
about robustness focus on limited parts and implications of the
definition provided by the IEEE definition. This fact increases the
need for a systematic review to build a larger perspective over
the area and categorize the existing studies.

The next step is to identify the research questions. We needed
to classify the results based on the focus area of the studies. We
also needed to consider the system focus, and assess the quality
of research and the contribution based on the type of research,
contribution facet, and evaluation of the study. These research
questions are defined in Section 3.1.

As another part of the review protocol we needed to decide
which databases to search, what search terms to use, what types
of studies to include, and decide how to classify and report the
results. ISI Web of Knowledge, Compendex and IEEE Xplore digital
libraries were chosen. We also used the ACM digital library to con-
trol the completeness of our selected studies.

We used the following search string within keywords, title and
abstract to find results in the databases mentioned above:

((robust OR robustness) AND software).

The search term was chosen to be very broad in order to cover
the most relevant results. The intention was to use more or fewer
words depending on the number of hits, which proved to be unnec-
essary since the number of hits was in a typical range for large
systematic reviews.

To select relevant primary studies from the whole set of identi-
fied studies the exclusion was made by one researcher. However,
to minimize the bias the review protocol required us to use a sec-
ond person in each step to classify 20% of the studies in every
selection step. The control studies were to be selected randomly.
The results from the primary and control selections were then to
be compared and in case of difference the issue needed to be ad-
dressed. The results from this step are discussed in Section 3.5.1.

3.1. Research questions

This paper identifies the state of knowledge and the gaps in the
knowledge in Software robustness. Robustness is the main topic in
our ongoing industrial project described in [147]. The goal of the
project is to identify and improve the state of art and practice of
software robustness in different phases of software development.
To answer these questions we have specified the following
research questions:

RQ1 Phase focus: Which phase of the software development
process is the main focus of the existing studies?
RQ2 System focus: What kind of systems do these studies
mainly focus on?
RQ3 Contribution/research quality: What is the quality of the
research and contributions in each study:
1. Research type: What kind of a research study is this?
2. Contribution facet: What is the form of the main

contribution?
3. Evaluation: What kind of evaluation is made to evaluate the

proposed contribution?

We answered these questions by conducting this systematic lit-
erature review and following the review protocol described earlier
in the paper. The results and conduct of the review are discussed in
the following sections.

3.2. Sources of information

To have the broadest set of papers possible, we searched the
most popular literature databases in the field. These are databases
used often by the researchers in the fielduse. Here is the list of the
digital databases searched in our study:

1. ISI Web of Knowledge (ISI)1

2. Compendex (CPX)2

3. IEEE Xplore (IEEE)3

4. ACM Digital Library (ACM)4: this was searched partially to
validate completeness of our selected results.

http://www.isiknowledge.com
http://www.engineeringvillage2.com
http://www.portal.acm.org
http://www.portal.acm.org

Table 1
Initial search results for three databases and a control database.

Database Search date Total hits Title filtering Cumul. unique

ISI 2010-12-31 2264 282 282
CPX 2010-12-31 3976 371 561
IEEE 2010-12-31 2953 148 601
ACM 2010-12-31 (3645) – 601

Total 2010-12-31 9193 801 601

4 A. Shahrokni, R. Feldt / Information and Software Technology 55 (2013) 1–17
These databases cover a majority of journal and conference
papers published in the field of software engineering. Technical re-
ports and other documents with no peer review assessment were
excluded from the study due to difficulty of assessing the results
and to the large volume of results obtained if these were to be
included.

After performing the search, we removed and resolved the over-
laps and duplicates from different sources manually. The first three
databases were fully searched while only 10% of results from ACM
digital library ranked as most relevant, by the database search
engine, were searched to check the completeness of the set of re-
sults. If the results here would show a significant number of rele-
vant results had not already been included, the search would be
expanded.

3.3. Search criteria

To search in the databases the following search criterion was
used on title, abstract and keywords fields:

((robust OR robustness) AND software).
5 From the 3645 results found in the ACM digital library, the top 350 after ranking
by relevance (approximately 10%) were analyzed and compared to the results from
the previous databases. No new relevant studies that were not already included could
be found. The results from ACM are not included in the total number of papers, since
they were not fully searched and were only included in the study for validating the
completeness of the selected studies.
It is a common practice and guideline to set a start date for sys-
tematic reviews [48,155,5]. We set 1990 as the start date since the
formal definition of robustness in software engineering introduced
by the IEEE standard glossary of Software Engineering [1] was
introduced in that year. Another reason for selecting that date is
that the important work in the field published before this date,
such as [76,23], have been referenced and further developed and
used in studies published after 1990. Another criteria for the in-
cluded studies was that only papers in English were included.

Depending on the functionality provided by the databases
search engines, we excluded the results outside the field of soft-
ware and computers before the studies were further processed.
This was due to the wide use of the term robustness in other unre-
lated fields such as mechanics and agriculture. Since the papers
that are related to both software and one of these fields are also
sorted under the software category, excluding these results would
not exclude any results of interest for this study.

Applying these criteria on the three initial databases gave 9193
non-unique results. Due to the large number of excluded papers
based on titles, the results were exported to our reference manage-
ment program after the title exclusion step. Therefore, the number
of unique initial results is not known to us and we can only present
the accumulative number of hits from the three databases.

Search results in the databases were all sorted according to rel-
evance of papers. According to our observations, this criterion
proved to be very accurate for our study since the number of
included results dropped very fast when they were classified as
less relevant by the databases.

After sorting the results from the previous search engines, the
ACM digital library was searched and 3645 papers were found
using the same search terms. In the top 350 most relevant papers,
no new papers with a relevant title were found that were not
already included in our final database. This suggested that we have
already covered the most relevant results in the field.
3.4. Study selection

For selection of studies we developed exclusion/inclusion crite-
ria as described in this section. The initial hits were filtered and
excluded in several steps which will be explained below.

Exclusion criteria based on title:

� The paper discusses a different field than software, i.e. the title
does not suggest that there is any focus on software in that
study.
� Short papers under five pages were excluded.
� Robustness is used as an adjective to describe something unre-

lated to software and it is clear from the title that software
robustness is not discussed in this paper, e.g. ‘‘Robust Resource
Management for meta computers’’ where robust is used as an
adjective to describe resource management rather than the
software.

Exclusion criteria based on abstract:

� If robustness is used in another meaning or the paper just
claims that the software, method or contribution they have
made is robust without any focus on how and why they have
made it robust, then the paper is excluded.
� If the paper has a completely different focus than software

robustness or software quality. If this has not been detected
during the title phase, then it is excluded in the abstract review
phase.

For instance, in some articles robustness describes the proposed
method or a part of the development process rather than the soft-
ware itself. These cases were usually detected and excluded during
title or abstract phase. A common example was robust watermarks
within software security that appeared very often but was out of
the scope of our study although it had the word robust and was
in the field of software.

Exclusion criteria based on full text were the same as criteria
based on abstract. In some cases the product is claimed to be ro-
bust and judging whether there is any focus on software robust-
ness is not possible from the abstract. These cases were handled
on the full text level and studies were only included if the process
of achieved robustness was presented. However, if robustness was
claimed with no elaboration on how and why it was achieved, the
paper was excluded from the study on full-text level.
3.5. Data extraction and synthesis

As mentioned in Section 3.3 papers that were clearly not related
to the field of software robustness, based on the title, were ex-
cluded. In total 753 studies were included. Any study that has
mentioned robustness and was in the field of software in a mean-
ingful way was included after the first selection phase. After the
results from each search were completed, the papers that had
passed through the filter were moved to the final database. The
cumulative number of unique results after each search in the final
database was 282, 561 and 601 which indicates the high number of
duplicates between the databases. These numbers are presented in
Table 1.5

Fig. 1. Statistics on data selection in different phases on inclusion/exclusion.

Table 2
Categories for the research questions.

Phase focus Requirement, design & implementation, evaluation, analysis,
verification and validation (V&V), general

System focus Web application, distributed and network, real-time/safety
critical, COTS, Operating systems, embedded systems, general

Research
type

Philosophical paper, solution proposal, evaluation paper,
experience report, review, investigation, call for research

Contribution
fac.

Tool, method, framework evaluation, metrics, model, review

Evaluation Academic lab/toy, large academic, open source systems, small
industrial, industrial, no evaluation

A. Shahrokni, R. Feldt / Information and Software Technology 55 (2013) 1–17 5
In the second phase of data extraction, the abstract of the 601
included studies was reviewed. In this phase, 16 more papers were
excluded based on title. These papers had passed through the title
exclusion although they should not have. Another 20 papers were
excluded for being short papers and 280 papers were excluded
based on the abstracts.

The third phase of exclusion was done on full-text level and 134
more studies were excluded, which left 144 studies for the next
phase of the review. Statistics on how and when the studies were
excluded can be seen in Fig. 1.

The final 144 selected papers were then categorized based on
the research questions. The categories used for each research ques-
tion are presented in Table 2. Some of the categories are trivial, for
the more complicated facets we were partly inspired by other sys-
tematic reviews and mappings.

The phase focus facet is divided based on the most common
phases of software development. However, we considered design
and implementation as the same category since many studies with
implementation guidelines and contribution had a main focus on
design.

The categories in the system focus facet were developed as the
studies were classified. The category general includes the studies
that do not have a certain system as focus and are applicable to dif-
ferent types of systems.

The research type categories were inspired by [130]. Here, we
have combined the categories Validation Research and Solution
Proposal since the distinction is often not easy. We also replaced
Opinion Papers with call for research, Investigation.

The contribution facet was also partly inspired by [130]. Here,
we have introduced the categories review for studies that review
a certain concept or part of the field. We also added framework
to replace process since most of the studies with a process focus
also introduce a tool, method or model to help adopting the pro-
cess and have a more generic view of the software robustness field.
The last category added was evaluation. This category includes pa-
pers that further evaluate an already published concept and do not
introduce any new concepts or solutions.

In the last facet, Evaluation, we categorized the studies based on
the type of evaluation they have provided for their results. The Aca-
demic lab/toy category includes studies where the results have
been evaluated on small systems developed as case studies for that
specific project. Studies in the large academic category are also
evaluated in an academic setting but on larger and already existing
projects that are not specifically developed for a case study and are
used more broadly. The open source category includes studies
evaluated on existing open source systems. The small industrial cat-
egory consists of small case studies developed for evaluation of
that specific study in an industrial setting. Finally, studies with
large industrial evaluation include studies with evaluation on a lar-
ger and existing industrial project.

3.5.1. Selection and extraction validity
3.5.1.1. Validity control I. From the 601 papers that had passed the
initial title filtering, 60 (10%) were randomly selected and reviewed
by author 2. This control was done on abstract level and the goal
was to either accept or reject based on the abstract. Full text filter-
ing, classification and categorization of the papers were left to the
second validity control.

In these 60 papers there were six deviations between the judg-
ments of the two authors. After studying these deviations two of
the excluded papers in the initial selection which were included
by the control classification were judged to be included. In the
other four cases the initial selection was judged to be correct.
The two new papers were eventually excluded in the full text
filtering step.

This control suggests that by studying 10% of the results, 10%
irregularity was detected. Therefore, the studies were reviewed
again by author 1 to detect possible exclusions that could be
included or reexamined. The studies that could have been excluded
by mistake were reviewed again and if the initial judgment was not
correct they were included.

In the next step, another 10% of the studies were screened by
author 2 which resulted in no inconsistencies. However, there
were five studies that were accepted by author 2 at abstract level
that were rejected by author 1 in the full-text level. This means
that these studies were accepted by author 1 on abstract level as
well.

3.5.1.2. Validity control II. To check the validity of categorization of
results another control was performed. From the 144 accepted
papers, 28 papers were randomly selected. Author 2 categorized
the selected papers without any communication and access to
the rankings of author 1. In this case, there were six deviations
on ranking of evaluation of studies. After analyzing the deviations
the reason was found to be using different definitions of the cate-
gories. Author 1 had ranked studies working on commercial sys-
tems in an academic context as large academic while author 2
had ranked them as industrial. This was discussed and clarified
between the two authors and the studies in those categories were
once again screened based on the definitions given in this paper.
Two other deviations were observed on the phase focus of the
studies. Author 1 had ranked them in the category design while
author 2 had them in analysis. This also was found to be due to dif-
ferent definitions of the phase analysis. Clarifying our definitions of

Table 3
Focus of the studies.

Focus Papers

Verification &
validation

[15,18,25,26,29,30,33,35–37,44,45,51,53,57,56,61,62,65,139,79–81,83–85,95,94,127,93,97,100,102,107,109,112,113,117–
120,122,123,125,128,129,131,137,138,140,142,143,145,148,150,152,158,157,161,163,162,167,169,104,103,59,96,101]

68

Design &
implementation

[2–4,7,10,14,24,32,40–43,52,54,55,58,60,67,70,110,71–74,160,75,78,87,88,98,108,111,115,121,132–
136,141,144,149,151,154,156,165,166,168,46,64,153]

51

Analysis [6,9,17,27,28,31,63,69,105,126,164] 11
Evaluation [8,12,16,19,39,86,114,159] 8
General [20,68,38] 3
Requirements [66,77,146] 3

6 A. Shahrokni, R. Feldt / Information and Software Technology 55 (2013) 1–17
this category as presented in the paper, the authors agreed that the
initial classification was correct. In three other cases author 2 had
ranked the studies in more than one category, but on examining
those papers the category selected by author 1 proved to be the
main contribution.

3.6. Threats to validity

The most important threat with this result is the possibility of
using other words than robustness by some studies. However,
since robustness is a commonly used term, the possibility of any
significant contribution not mentioning the word in the title or ab-
stract is minimal. The already large scope of the study would not
allow us to expand this study with more search terms. Further-
more, all the results known to us during the years we have worked
in the field were included in the final set of studies.

A limitation in this study is that some methods that are mainly
used in studies focusing on concepts such as security and defensive
programming, which can also be used for robustness assurance and
design are not included. This is a common problem for many sys-
tematic reviews that deal with broad but important concepts such
as robustness. In this study, we decided not to include the papers
which are not directly related to robustness to limit the already
large scope of the paper. However, future work could also consider
techniques that indirectly or only partly has effects on software
robustness.

Another threat that needs to be considered when conducting a
systematic literature reviews is the possibility of bias in selection.
This concern was addressed as described in Section 3.5.1. The
selection phase was repeated by author 2 in two phases. The re-
sults show a satisfying validity of the screening process.

The last validity threat was the possibility of existence of inter-
esting studies in other fora. However, the databases searched cover
the area of software engineering well and we have no reason to
think that this does not apply for software robustness. Although
the ACM digital library was not fully searched, the search in this
database provided no new papers in the top 10% most relevant re-
sults. Relevance has been a very accurate measure in all the other
databases and we assume that this rule applies to ACM digital
library too. This control raises the level of confidence on the cover-
age of the most important results.

4. Results and analysis

In this section we present the results of the systematic review.
The subsections are structured based on the research questions
mentioned in Section 3.1. Section 4.1 presents our findings regard-
ing RQ1. This section provides a more detailed overview of the
main studies found by this review sorted after the focus area. Sec-
tion 4.2 gives statistics and overview of the system focus of the in-
cluded studies to answer RQ2. Section 4.3 discusses the quality of
the research, contribution and evaluation in the selected studies
to answer RQ3 and its sub-questions. The results in this section
are in the form of statistics. The quality of each single study is
thereby not presented here. The goal is to give an overview of
the quality of studies in the field and identify gaps and weaknesses
in the quality of the results.

4.1. Phase focus of studies

In this section, we present an overview of available literature in
the field of software robustness based on the phase of software
development in focus. The different phases represented in this
study are analysis, requirements, design & implementation, verifi-
cation & validation, evaluation and general. While the first four cat-
egories are well-established phases of software development, more
theoretical papers that evaluate a hypothesis unrelated to a spe-
cific phase of software engineering are categorized in the evalua-
tion focus. The general category consists of studies with clear
contributions that do not have a certain phase focus and are gen-
eral for the field of software engineering or are valid for all phases
of software development.

In each subsection, results with strong contributions are
discussed in more detail and an overview of the discussed area is
presented. The list of all papers in each subsection can be found
in Table 3.

An interesting point in this table is the lack of studies in require-
ments engineering and maintenance. The main areas of require-
ments,analysis, design & implementation, and verification &
validation, are discussed in more detail in separate sections. The
papers in general and the evaluation category are discussed in Sec-
tion 4.1.5.

4.1.1. Requirements
According to our findings, the extent of published studies on

software robustness requirements is very limited. No major study
providing methods or tools on how to create requirements to
ensure robustness has been found in this study.

In an industrial experience report, Heimdahl and Czerny [66]
discuss the importance of completeness in requirements engineer-
ing to achieve reliability and robustness, and provide analysis on
completeness of a large avionics system. Another contribution with
the same focus is [77] that discusses completeness of requirements
as the main factor to achieve robustness in a software system. In
this study, Jaffe et al. suggests that for a system to be robust there
should always be an expected behavior to leave every failure state,
even if that results in degrading the functionality of the system. For
this purpose, they propose a model that is evaluated in a large aca-
demic setting.

Another study with a certain focus on the requirements but
main focus on testing is conducted by Nebut et al. [123]. They
introduce a technique ‘‘with a light declarative formalism to ex-
press the mutual dependencies between the use cases, in terms
of pre/post conditions (kind of contracts). From these enhanced
requirements, a labeled transition system is built to capture all
the possible valid sequences of use-cases from an initial configura-
tion’’ [123]. Here, the goal is to improve the robustness by consid-
ered all the possible traces and sequences in the application.

A. Shahrokni, R. Feldt / Information and Software Technology 55 (2013) 1–17 7
Studies [66,77] also propose that completeness of robustness
requirements is important but there are no further studies that
present a systematic way of ensuring the completeness. In general,
there are very few studies regarding robustness requirements and
there is a gap of knowledge that needed to be addressed. In an
attempt to bridge this gap we conducted a study to identify
different types of robustness issues [146]. This study presents a
framework called ROAST which categorizes these robustness issues
into patterns that can be used in the process of requirements elic-
itation. Furthermore, ROAST suggests different abstraction levels
for specification of robustness requirements.

4.1.2. Analysis
Another major phase of software development is analysis. The

identified studies in this category focus on how robustness issues
can be predicted and prevented early in the development process.

For robustness analysis of web-based systems at an early stage
of software development, Calori et al. [28] propose a framework
consisting of five steps:

1. Rank the severity of failure scenarios.
2. Capture system behavioral aspects and identify interface

objects.
3. Examine potential failures and possible causes and effects.
4. Create a model of the system failure states with probability

and severity for nodes and edges.
5. Evaluate the nodes by entering evidence about the state of a

variable.

This approach can be used to compare the severities and prob-
ability of occurrence of failure scenarios. ‘‘The most critical failures
can be detected and targeted for prioritized remedial actions. Fur-
thermore, the influence of a preventive action on the system being
developed can be estimated. This can represent a powerful tool for
design trade-off decisions’’. [28].

In a study with a more formal approach [6], presents an abstract
interpretation of the LUSTRE language to study propagation of er-
rors and provides an analysis method for checking robustness of
LUSTRE functions.

In [98], Kulkarni and Tripathi study robustness in context-
aware software. The paper presents a forward recovery model for
robustness issues encountered when using their framework for
developing context-aware software. They categorize the major
failures into service discovery and reconfiguration, service-level
binding, service-level exceptions, and context invalidation failures.

On a more theoretical note, Laranjeiro et al. assess the effective-
ness of using text classification algorithms such as Support Vector
Machines, Large Linear Classification, and K-nearest neighbor for
identifying robustness issues in web service responses [101]. The
results suggest that large linear classification has a high precision
in classifying robustness problems.

In another theoretical paper, Cheng-Ying and Yan-Sheng [31]
claim that organizing exceptions into hierarchies can be of great
benefit to construct robust code. In this study they create a model
for exception analysis to improve robustness of the system.

Another method for robustness analysis is introduced by [27],
which presents RATF, a method for combining robustness analysis
and technology forecasting.

Finally, Groot [63] proposes an approach called degradation
studies for analysis of how system output degrades as a function
of degrading system input such as incomplete or incorrect inputs.

4.1.3. Design & architecture
After verification and validation, with 51 included studies,

design and implementation is the largest focus group of the pri-
mary studies. One of the most discussed focus areas for design
and architecture is wrappers (encapsulation), which is used to
mask and prevent the propagation of robustness issues. Due to
the large number of studies with focus on wrappers, these studies
are discussed in a separate subsection. Furthermore, some of the
other contributions in the field of robustness design and imple-
mentation are discussed in this section.

For automatically generating interface properties from high-le-
vel robustness rules, Acharya et al. [3,4] propose a framework.
They argue that related interfaces have ‘‘similar structural
elements (such as function parameters, return values on success/
failure, and error flags), when specified at a certain abstraction le-
vel. The generic rules are translated into concrete properties by a
property engine that queries the specification database for inter-
face information and the pattern database for source-code level,
programming-language specific information’’ [3].

In a series of studies Huhns et al. [70,110,69,134,71,72] claim
that redundancy increases robustness of software. They ‘‘describe
a methodology based on active, cooperative, and persistent
software components, i.e. agents, and show how the methodology
produces robust and reusable software’’.

Papers [41,42] present a programming language for robust
software systems, Bristlecone. Bristlecone applications have two
components: high-level organization description that is used for
recovery from an error to a consistent state and specifies how
the application’s conceptual operations interact, and a low-level
operational description that specifies the sequence of instructions
that comprise an individual conceptual operation.

In another study, Hui and Lui [73] argue that to ensure the func-
tion of critical services their operation can use but should not be
dependent on less critical components. Otherwise, a minor fault
can propagate ‘‘along complex and implicit dependency chains
and bring down the system’’ [73]. In a theoretical attempt to ad-
dress this issue, they present dependency algebra, a framework
for dependency management in real-time systems. The framework
allows comparison of different designs from the perspective of
robustness.

Adding error-handling code and design is another popular way
to increase the robustness of software. Keane and Ellman have
‘‘implemented a high-level language and runtime environment
that allow failure-handling strategies to be incorporated into leg-
acy Fortran and C analysis programs while preserving their compu-
tational integrity’’ [87]. Moreover, in a series of studies, Issarny and
Benatre [160,74,75] investigate the design and implementation of
exception handling support for architecture-based development
environments.

On the other hand, Gabriel and Goldman [58] argue that achiev-
ing robustness by adding explicit exception handlers and error
detection code to the program decreases the maintainability and
increases the complexity of the system. Instead Gabriel proposes
developing context-aware programs to solve the robustness prob-
lem. The main robustness issues in context-aware systems are
[98]:

1. Failures in context-driven reconfigurations due to inaccessi-
bility of services or services not being in the correct state for
performing the reconfiguration actions.

2. Object-binding failures
3. Service-level operational failures
4. Context invalidations due to lack of privilege or unmet

condition

Kulkarni and Tripathi [98] present a recovery model for con-
text-aware applications which ‘‘consists of mechanisms for asyn-
chronous event handling and synchronous exception handling.
Events represent occurrence of a particular state (normal or fail-
ure) related to a context-aware application. Exceptions represent

8 A. Shahrokni, R. Feldt / Information and Software Technology 55 (2013) 1–17
a subclass of events that arise synchronously during the execution
of an action within a role operation or a reaction.’’ [98].

Another study conducted by Hameed et al. [64] proposes an as-
pect-oriented approach to separate error discovery and handling
from the core functionality. This can limit the cost and time for
introducing changes in the system and make the robustness and
quality testing of a system cheaper in the long run.

In a theoretical study, Ambriola and Gervasi [10] identify sev-
eral different quality attributes such as robustness and investigate
the effect of factors such as separation, abstraction, composition,
replication and resource sharing in architecture on these quality
attributes. The result is that replication has a positive effect on
robustness and resource sharing has a negative effect.

Another aspect of software robustness is stability against unex-
pected events in the execution environment. Choi [32] introduces a
kernel resource protector which shields the kernel from faults gen-
erated by modules. Observing the relationship between modules
and resource objects, the protector can detect and resolve misuses
of kernel resources by modules.

4.1.3.1. Wrapper. Wrapping or encapsulating external modules or
services is a common design method used to improve robustness.
The method aims at filtering the inputs and avoid the propagation
of errors in the system.

Schmidt [144] presents the Wrapper Facade pattern to encapsu-
late low-level functions and data structures with object-oriented
class interfaces. ‘‘Common examples of the Wrapper Facade
pattern are class libraries like MFC, ACE, and AWT that encapsulate
native OS C APIs, such as sockets, pthreads, or GUI functions’’ [144].
Schmidt proposes a cohesive approach for wrapping classes in the
same pattern. He proposes the following activities for creating
cohesive classes:

� Coalesce multiple individual functions into class methods
� Select the level of indirection
� Determine where to handle platform-specific variation

The aim for this encapsulation is partly to avoid robustness
problems to happen or propagate.

Multilayer systems are another focus area for using encapsula-
tion to achieve higher robustness. Lu et al. [108] investigate robust-
ness in multi-layered software architectures such as AUTOSAR
(AUTomotive Open System ARchitecture) which is the new archi-
tecture standard in the automotive industry. Lu et al. maintain that
in such systems to minimize the error propagation from one layer
to the next can increase the severity of the error. They argue that
the quality of these systems relies not only on the correctness of
underlying services but also on multilevel properties. To evaluate
this argument they develop a ‘‘software as a set of wrappers check-
ing multilevel properties at runtime. The wrappers check the
correctness of the application that depends on the behavior of
the middleware (communication channels between application
components) and OS functions (task management and scheduling)
despite accidental and design faults that could impair both the
control flow and the data flow of the application. They also trigger
recovery actions.’’ [108].

Another area of focus for robustness design is programming
libraries. Most common libraries are designed for reuse and focus
on flexibility, neglecting robustness requirements [55]. Frick
et al. [55,54] investigate the trade-off between flexibility and
robustness. They present an object-oriented library of algorithms
and data structures with focus on robustness and flexibility called
KARLA. In a similar study, De Vale and Koopman [43] present a
safe/fast I/O library with higher safety and robustness than stan-
dard I/O libraries which has the same performance. The robustness
of this library is evaluated using Ballista robustness testing tool.
In another attempt to increase the robustness of C libraries, Fet-
zer and Zhen [52] present the HEALERS system. Using header files
and manual pages, HEALERS automatically generates a wrapper for
each global function that performs argument checking before
invoking C library functions. HEALERS has also been used for
robustness and security hardening of COTS in [154].

Other interesting results using wrappers to increase robustness
can be found in [78,24,40,141,149,7,46].

4.1.4. Verification and validation
With 68 studies, robustness verification and validation (V&V) is

the largest focus group in software robustness phases. The main
technique used in this category is testing. This section is divided
into three subsections robustness benchmarks, fault injection and
automated robustness testing. Automated robustness testing tools
almost exclusively use fault injection methods. However, the stud-
ies in that category have their main focus on the automated tool,
unlike others that use less sophisticated automation mechanics
for fault injections and focus more on presenting the technique
they use.

4.1.4.1. Robustness benchmarks. As mentioned above, an important
discussion in robustness testing is the different methods to bench-
mark the level of robustness in a system.

CRASH is the most commonly used metrics for robustness fail-
ures as presented in [95]. For grading the severity of robustness
vulnerabilities, CRASH uses five levels:

C Catastrophic (OS crashes/multiple tasks affected)
R Restart (task/process hangs, requiring restart)
A Abort (task/process aborts, e.g. segmentation violation)
S Silent (no error code returned when one should be)
H Hindering (incorrect error code returned)

In another study, Dingman [44] uses the returned messages
from an aerospace system under robustness test to create mea-
surements and benchmarks for robustness failures. The results
are very similar to CRASH.

Siewiorek et al. [152] present another benchmark which classi-
fies robustness failure reasons into four categories: omissions, tim-
ing, value or state of Response, and crash. Another study providing
robustness benchmarks is [26], which presents an experience re-
port of developing a benchmark to measure system robustness.
These metrics are used to evaluate robustness of C libraries.
Robustness failures were mostly found in the following parts of
the libraries: task handling, numeric manipulations, I0 and System
protection mechanisms. A CRASH-like benchmark was also pre-
sented for failure classification in this study.

On a different level, Mukherjee and Siewiorek [122] divide
existing robustness benchmarks into the following categories:

� Crashme: random data against system interfaces.
� Modular: Regard the system as isolated modules and check the

robustness of each module.
� Hierarchical: decompose the software based on features and

test robustness of each feature.

They also propose a hierarchical benchmark based on features
and test it on C++ applications [122].

Some other robustness benchmarks included in this review can
be found in [85,117].

4.1.4.2. Fault injection. Software fault injection is the primary meth-
od used for robustness testing. Fault injection techniques are clas-
sified into the following categories by [169]:

A. Shahrokni, R. Feldt / Information and Software Technology 55 (2013) 1–17 9
� Software implemented fault injection where faults are injected
by means of software.
� Scan-chain (flip-flopping ICs) implemented fault injection

where faults are injected to physical system using scan-chains.
� Pin level fault injection where faults are injected to the pins of

an IC.
� Fault injection by external disturbance where heavy ion radia-

tion and power disturbance are used for injecting faults by
external disturbances.
� Fault injection in emulated systems where faults are injected to

an emulated model of the system.

Software robustness testing using fault injection uses exclu-
sively the first and in some cases the last technique.

Voas et al. [164] present an automated software analysis envi-
ronment called Pisces Safety Net (PSN) which is a part of Whitebox
Software Analysis Toolkit that injects faults against hardware and
software. Instead of analyzing correctness, this approach examines
output behavior and aims to analyze and avoid dangerous and life-
threatening outcomes. The goal of PSN is to identify weaknesses in
software with catastrophic consequences and locate weaknesses in
code. Input to PSN is a program, an operational profile, and a
description of unacceptable outcomes. Based on that, PSN returns
locations in code with potential weaknesses. PSN requires some
manual set-ups for what part of the code to perform fault injection
on and what is an unacceptable output.

Java applications have also been the subject of robustness fault
injection tests. Zamli et al. [169] presents SFIT, a fault injection tool
to assess the dependability of Java COTS, while Olah and Majzik
[126] have developed an Eclipse-based fault injection framework
that provides a model-based approach and a graphical user inter-
face to specify both the fault injection experiments and the run-
time monitoring of the results for Java applications.

Robustness testing of network protocols is another area of fo-
cus. Tsanchi et al. [158] test telecommunication systems’ fault tol-
erance by injecting software faults into the service manager and
observing the behavior in the fault manager.

In another study, Chuanming [33] uses a formal test specifica-
tion language, TTCN, to describe test cases for robustness testing
of network protocols. TTCN is also used in [140] to create a robust-
ness test framework consisting of two phases: (1) Creating in-
creased specification by considering hazards in the specification
model (2) A method to generate robustness test cases in TTCN-3
from the increased specification provided in (1).

Fault injection has also been used to test and evaluate robust-
ness of web applications. In [100] an online tool called Wsrbench
is presented for evaluation of web services. Another study that
focuses on this issue is [145], which provides a framework for test-
ing robustness of web services. For white-box coverage testing of
error recovery code in Java web services, Fu et al. [57,56] use com-
piler-directed fault injection.

Several studies concerning robustness testing of Commercial-
Off-the Shelf (COTS) were found in the review. The interest in using
COTS is rapidly increasing due to development of more complex
systems and the amount of money and time that can be saved
using third-party software. However, there is a need to evaluate
the robustness and reliability of these systems before they can be
integrated into the solution. Barbosa et al. [15] present a method-
ology for evaluating robustness and dependability of COTS using
fault injection techniques, while Sarbu et al. [142] provides a
robustness testing method for testing operating system drivers
(COTS OS extensions) using their operational state model.

Finally, Johansson et al. [81] study the impact that varying the
time for error injection has on evaluation of software robustness.
Using ‘‘call blocks (i.e. a distinct sequence of calls made to the dri-
ver), the trigger for injection can be used to guide injections into
different system states, corresponding to the operations carried
out’’.

Some other studies using fault injection techniques for robust-
ness testing are available in [25,137,138,120,124].

4.1.4.3. Automated robustness testing. Automated robustness testing
tools are common contributions in the area of software robustness.
The main idea of these tools is to use stress testing or fuzz testing
to try to crash a system and assess its robustness. Several fault
injection studies mentioned earlier use this principle as well, but
since their main focus has been on the use of fault injection and
not on the resulting tool, they were discussed in the previous part.

The most well-known contribution in robustness testing is the
Ballista project. In [93] Koopman describes the Ballista robustness
testing tool. Ballista uses random and extreme values of different
parameter types against system interfaces to test their robustness
and stability against random and extreme values. The results of
Ballista testing on operating systems identify significant numbers
of robustness failures in many well known operating systems
[94,97,148]. Ballista-like testing might not be a substitute for other
testing activities but it can serve to check the overall quality of
software at a low cost due to its scalability and automation. Fur-
thermore, it can estimate the extent of potential problems.

Several studies have used Ballista and the CRASH metrics to
evaluate robustness of different kinds of systems. In [127] different
operating systems are tested and compared using Ballista and
CRASH. Invalid file pointers, NULL file pointers, Invalid buffer
pointers, NULL buffer pointers, MININT integers, and MAXINT inte-
gers are the most detected robustness problems. Fernsler and
Koopman [51] use Ballista exception handling to evaluate robust-
ness of the high-level architecture of run-time infrastructure
(RTI) which is a distributed simulation system providing robust
exception handling. In another study, Jiantao et al. [80] extend Bal-
lista to test the exception handling robustness of C++ ORB client-
side application interfaces. They also provide a simple probing
method for eliminating simple cases of robustness failures.

JCrasher [37] is another Ballista–like fuzz testing tool special-
ized for Java applications. ‘‘JCrasher offers several novelties: it tran-
sitively analyzes methods, determines the size of each tested
method’s parameter space, and selects parameter combinations
and therefore test cases at random, taking into account the time
allocated for testing; it defines heuristics for determining whether
a Java exception should be considered as a program bug or whether
the JCrasher supplied inputs have violated the code’s precondi-
tions’’ [37].

In other studies, Ghosh et al. [62,60,61,143] wrap ‘‘executable
application software with an instrumentation layer that can cap-
ture, record, perturb, and question all interactions with the operat-
ing system. The wrapper is used to return error codes and
exceptions from calls to operating system functions. The effect of
the failure from the OS call is then assessed. If the system crashes,
it is non-robust’’ [62].

Belli et al. propose a model-based approach to robustness test-
ing [18]. The models consist of event sequence graph and decision
tables which are later tweaked by the testing application in order
to generate robustness test cases.

Some other automated robustness testing tools identified in this
review are presented in [167,45,53,118,119,104,103].

4.1.5. Other work
There are some other major contributions that could not be

classified in any of the above sections. Therefore, we will discuss
them separately here.

In a theoretical study, De Vale and Koopman [39] argue that
software developers identify two main reasons why software sys-
tems are not made robust: performance and practicality. They

10 A. Shahrokni, R. Feldt / Information and Software Technology 55 (2013) 1–17
claim however that, by using automated wrappers and robustness
testing techniques many of these problems can be solved. Further-
more, in a case study they claim that Maxion’s hypothesis that
‘‘developers without specific training on the topic might not fully
grasp exceptional conditions seems to hold’’ [39]. Thereby, they
suggest that training developers to use robustness improvement
techniques is another effective way of increasing robustness of a
software.

Another theoretical paper about robustness is [68] where Henz-
inger identifies two challenges in embedded systems design:
predictability and robustness. In this paper robustness is regarded
as a form of continuity since in a robust system the reaction
changes slightly if the environment changes slightly, and its execu-
tion properties change slightly if the platform changes slightly.
This theory is used to create a model of how a robust system
should behave and how it can be tested.

In another study, Maxion [114] divides the reason for programs
failures into two main categories: logic errors in the code, and
exception failures. Exception failures can account for up to 2/3 of
system crashes. Then he goes onto test the hypothesis that robust-
ness for exception failures can be improved through the use of
dependability cases. ‘‘Dependability cases, derived from safety
cases, comprise a methodology based on structured taxonomies
and memory aids for helping software designers think about and
improve exception-handling coverage’’ [114].

Some other important contributions are made by Nebut et al.
[123] who present a method that generates robustness tests using
requirement contracts, Mendes et al. [116] who propose a method
to benchmark the robustness of web servers, and Luo et al. [109]
who have developed a method for robustness test generation and
execution using input syntax and interaction scenarios.
4.2. System focus

Table 4 shows the primary studies categorized based on their
main system focus. The main categories found were commercial-
off-the-shelves (COTS), distributed & network systems, embedded
systems, operating systems, real time & safety critical systems
and web applications. There were some results that focused on
other types of systems than the ones mentioned above. These are
listed as other. There also exists a category general which includes
studies that do not have any special kind of system in focus and
their results can be applied to many different contexts and
systems.

COTS, operating systems and web applications are the catego-
ries with most contributions. In the case of COTS the majority of
studies focus on finding design or verification methods to ensure
robustness of a system using COTS. This matter was discussed in
Section 4.1 when the focus area of each study was presented.
The same applies to web applications. However, regarding operat-
ing systems the main focus is to evaluate and test the robustness of
different parts of them, mainly using fuzz testing techniques. Bal-
lista and its extensions are commonly used tools for this purpose.
Table 4
System focus of the studies.

System focus Papers

General [2,4,10,17–19,24,26,27,29,31,37,39,41–43,52,54,55,58,69
136,140,141,144,151,152,156,164,166,168,104,103,59,64

Other [9,40,63,110,72,74,16,25,45,78,160,98,117,158,159,167,9
Operating system [4,8,32,53,61,81,85,127,94,93,95,107,118,119,125,143,14
Web application [28,57,56,65,139,100,102,112,145,162,163,46,101,116]
COTS [15,35,36,60,62,97,108,128,129,142,154,165,169]
Real-time/safety critical [20,30,44,66,67,73,77,115,133,157,161]
Embedded system [6,14,68,105,137,138]
Distributed & network [7,12,33,51,149,150]
4.3. Quality of research/contribution

This section discusses the quality of the primary studies based
on their research type and contribution. The quality is ranked
based on several criteria here. The type of research is discussed
in 4.3.1. Another criterion is the contribution facet (the type of con-
tribution) which is presented in Section 4.3.2. The last criterion is
the type of evaluation performed to evaluate the contributions.
This criterion is discussed in Section 4.3.3.

4.3.1. Research type
Fig. 2 shows the statistics on the type of the study in the se-

lected primary studies. Many of the studies conduct several types
of research. Therefore, the main contribution of the study was con-
sidered for categorization.

Most selected studies had some kind of evaluation which will
be discussed in Section 4.3.3. However, evaluation as research type
below refers to studies that do one of the following:

1. Evaluate robustness of a system using an existing method or
tool

2. Evaluate an already existing method by applying it to different
systems

Studies in the review category are the ones that are secondary
studies reviewing a field to answer a specific research question.
Solution proposals include studies that provide any new contribu-
tions or extend already existing ones.

As seen in Fig. 2, the absolute majority of the research involves
solution proposal or evaluation. The results suggest that there is a
need for more overview studies like this one to coordinate and
summarize the existing studies in the field.

It is notable that there are three review studies included in this
review. The first review is presented in [38] and gives the state of
art for development of real-time software where a minor focus is
robustness. The second review [151] provides an overview of the
use of formal methods in the developing robust and reliable
safety–critical systems. The last review [151] compares different
techniques for handling incomplete data in databases. One of the
criteria for the comparison is robustness. This overview was given
to show that studies similar to the one presented in this paper have
not been previously done.

Our experience suggests that despite several existing results,
the industry usually has problems adopting these results. One
way to solve that problem is to perform overview studies like this
one to present the academic results to the industry. The other way
is to try to understand the problems of the industry and find their
reasons behind this. This was done in our previous study presented
in [147].

4.3.2. Contribution facet
Fig. 3 shows a categorization of the studies based on their con-

tributions. Similar to the issue discussed about the research type,
#

–71,75,79,80,83,84,86–88,109,111,113,114,120–123,126,131,132,38,134–
,146]

60

6,153] 18
8] 17

13
13
11
6
6

Fig. 2. Research type.

A. Shahrokni, R. Feldt / Information and Software Technology 55 (2013) 1–17 11
most papers had more than one type of contribution. This was
addressed in the same way as discussed in Section 4.3.1.

Evaluation had the same definition as the one presented in
Section 4.3.1. The reason why there are not the same number of
studies of the type evaluation in contribution and research type
is that in some cases, although the study focused on evaluating a
system or method, the main contribution was a type of metrics,
method or tool which was considered more important than the
evaluation results itself.

The majority of contributions were in the form of frameworks,
methods or models. A framework is a detailed method which has
a wide purpose and focuses on several research questions or areas.
However, a method usually has a more specific goal and a narrow
research question or purpose. A model is different from both the
contribution facets mentioned above in the sense that it gives an
abstract classification or model of a topic and problem rather than
a specific and tangible way of solving a specific problem.

Alongside providing a model, framework, evaluation or method,
many studies provided a tool for evaluating their concept. These
Fig. 3. Contribu
studies were not classified in the tool category as contribution
facet. Only the studies where the tool was the major topic are clas-
sified in this category.

Metrics is another type of contribution facet that provides
guidelines for how to measure different aspects of robustness.

Fig. 3 suggests there is a relatively even distribution in the
contribution facets of the studies found. However, there number
of reviews are much smaller and there is no systematic review
with a more general focus, which further motivates the need for
the current study.

4.3.3. Evaluation
One of the important metrics for measuring the strength of

academic results is their evaluations. Fig. 4 gives statistics on
how the primary studies found in this review were evaluated.

Academic lab/toy refers to studies where for the purpose of eval-
uation a small program has been developed or when a case study
on a small commercial system was performed. Academic OSS (Open
Source System) refers to the studies where the evaluation was
tion facet.

Fig. 4. Type of evaluation.

12 A. Shahrokni, R. Feldt / Information and Software Technology 55 (2013) 1–17
done using an open source system. The results of these studies are
usually more reliable than the previous category. Large academic
evaluations refer to the studies where the evaluation is done on
large commercial systems or a large number of small systems.
These systems can be large commercial products, but if there is
no indication of performing action research in an industrial con-
text, the studies were classified in this category. These studies
are usually reliable and large enough for proving a hypothesis.

Small industrial evaluation refers to studies where the industrial
context is mentioned but the evaluation is done on one or two
small projects. The industry category includes studies performed
in an industrial context which include large projects or more than
two small projects. The results of these studies are also strong and
typically on the same level as large academic results.

As seen in Fig. 4, 65% of the studies either lack evaluation or
have a small academic evaluation. From the total of 144 studies,
13% are evaluated in either a small industrial project or a large
open source system. The results are considered medium-strong
from the evaluation point of view. The remaining 21% of the
studies are evaluated either in larger industrial contexts or in large
academic projects which typically work on commercial systems.
Furthermore, 86% of the studies with strong evaluation focus on
verification and validation. These numbers suggest that there are
very few overall results in software robustness, especially in areas
other than verification and validation.
5. Discussion

This systematic review gives an overview of the field of soft-
ware robustness. According to the results, the research contribu-
tions in some development phases such as requirements
engineering of software robustness are very limited. The main
gap we identified was the lack of studies on elicitation and speci-
fication of robustness requirements. Verification and validation in
the form of testing is the largest focus area, followed by design
and architecture solutions to improve robustness. Fault injection,
automated robustness testing tool, and random interface testing
are the main practices used for robustness testing. None of the
studies focused on other verification and validation activities than
testing.

Almost all the studies focus on robustness issues caused by in-
valid inputs, and they ignore other aspects of robustness included
in the IEEE definition. More complex aspects of robustness that we
discuss in [146], such as time out, interrupts, unexpected events,
and stressful execution environment are rarely considered in these
studies.

Robustness focuses on the states and events that should not
happen in a system, rather than how the system should function
in ordinary cases. It is cumbersome or even impossible in many
systems to create a complete specification of all the possible events
and states. Therefore, most academic and industrial projects
neglect robustness requirement elicitation and specification. This
neglect in many cases results in unawareness of the potential
robustness risks among the developers and testers and decreases
the overall robustness of the system. As mentioned, it can be
uneconomical and even impossible for companies to create a com-
plete requirement specification, which considers all the robustness
risks. Nevertheless, the companies should be aware of these risks
in a systematic manner, and consider specifying the most crucial
risks with the largest potential negative impact.

Most identified design and architecture studies focus on inter-
face wrappers that encapsulate external component interfaces
from the rest of the system. This method is mainly used when
working with COTS or third-party applications and services. Wrap-
pers filter the input and output data from the external modules.
Another popular design method to achieve robustness is graceful
degradation. Since the developers are not always able to predict
or intercept robustness issues it can be necessary to degrade the
functionality of the system in a controlled manner.

The majority of the published studies on robustness focus on
verification and validation of the system in the presence of input
with faulty value. Most methods and tools introduced in this
regard generate random test cases based on a simple model of
the system. Although this method can discover robustness risks
in the system, the high level of randomness and lack of structure
and traceability with the requirements in most of these studies
prevent us from guaranteeing the complete robustness of the sys-
tem. Proving robustness requires a structured or formal approach
considering every possible state of the system, which is not feasi-
ble for most of the systems with the techniques available today.
Therefore, randomly testing parts of the systems can make us more
comfortable with the robustness of the system but does not neces-
sarily eliminate all potential robustness risks.

The automated robustness testing methods can only be viewed
as complementary to other types of testing. It cannot replace unit

A. Shahrokni, R. Feldt / Information and Software Technology 55 (2013) 1–17 13
testing, system testing, overall functionality testing or even testing
of other quality attributes. The reason for the popularity of the
automated testing methods is the fact that they are to a large ex-
tent automated and do not require a large development and testing
effort. Although this might be enough for smaller systems, for more
complex and safety–critical systems or systems with requirement
on high safety and availability a more systematic method is
required to ensure or improve robustness.

We can draw many interesting conclusions based on the statis-
tics provided in this paper. Other than the majority of the paper
with a general system focus, there are studies that specifically
focus on web applications, COTS and operating systems. Since
robustness is an especially important attribute for embedded sys-
tems, more studies with this specific system focus can be valuable
to the practitioners.

Looking at the quality of studies, the conclusion is that many
studies introduce new ideas and solutions to problems regarding
software robustness but fail to evaluate their contributions prop-
erly and show their validity in larger contexts. Furthermore, given
our findings in [147], many of the results are not usable for the
industrial projects and remain pure academic contributions. One
reason for this is that many academic studies are evaluated in a
lab or controlled academic context and never take the step to be
evaluated in an industrial setting. Another reason is that academic
results tend to be context-specific and hard to generalize. There-
fore, they cannot be applied to many industrial situations. The
strongest results with strong evaluation found in this review are
focused on testing of large systems such as operative systems.
These tests are mostly randomly generated test cases based on
the structure of the system under test. We recommend the use of
statistical and evidence-based methods as described in [11,91]
for design and evaluation of future studies in the field. This will
provide more scientific, and repeatable results which are more use-
ful for the industry.
6. Conclusion

This paper presents a review of the state of knowledge in the
field of software robustness based on a systematic literature
review. In total, we analyzed 9193 primary studies from the three
well-known, scientific, digital libraries: ISI Web of Knowledge, IEEE
Xplore and Engineering Village (Compendex & Inspec). Another
350 most relevant results were browsed from ACM digital library
to ensure the completeness of our search.

A total of 601 papers were chosen based on primary title exclu-
sion. After another title exclusion and abstract and full-text exclu-
sion phases, 144 studies were selected. Based on the research
questions, each study was classified based on development phase
focus, system focus and quality of the research and evaluation.

The results indicate that in the field of software robustness
there are many studies on robustness testing of COTS and operat-
ing systems, but very few studies about requirement elicitation
and specification of robustness. Fault injection and automated
testing tools based on fault injection are the main areas for contri-
butions on robustness testing. The main contributions for improv-
ing robustness on the design and architecture level, the second
largest area of contributions, focus on the use of wrappers and
encapsulation of existing software components. Another finding
was that most studies focus on a very narrow definition of robust-
ness. Most studies only consider the invalid input aspect of robust-
ness and neglect other more complex aspects like time outs,
interrupts and robustness problems related to the execution envi-
ronment of the software.

The quality of the studies included in this review varied. In total,
65% of the papers have weak or no evaluation, while only 21% of
the contributions are strongly evaluated in large academic or
industrial contexts. Therefore, there is a clear need to conduct
stronger research in the areas where there is a gap of knowledge
or where the existing solutions are not evaluated enough to be use-
ful in industrial contexts.

Finally, we think that there is more research needed on eliciting
and specifying robustness requirements. Stronger evaluation, espe-
cially industrial evaluation, of the studies is also strongly recom-
mended in the future. Another issue that needs to be addressed
is to consider more types of issue that can lead to robustness prob-
lems. Today, most of the studies focus on robustness in presence of
input with faulty value but areas such as robustness in presence of
input with unexpected timing or in presence of stressful environ-
mental conditions has not been research as actively.
References

[1] IEEE Std 610.12-1990, IEEE Standard Glossary of Software Engineering
Terminology, 1990.

[2] H. Abie, R.M. Savola, I. Dattani, Robust, secure, self-adaptive and resilient
messaging middleware for business critical systems, in: 2009 Computation
World: Future Computing, Service Computation, Cognitive, Adaptive, Content,
Patterns (ComputationWorld 2009). IEEE, Piscataway, NJ, USA, November
2009, pp. 153–160.

[3] M. Acharya, T. Sharma, J. Xu, X. Tao, Effective generation of interface
robustness properties for static analysis, in: Proceedings of the 21st IEEE
International Conference on Automated Software Engineering, IEEE Computer
Society, Los Alamitos, CA, USA, September 2006, p. 4.

[4] M. Acharya, X. Tao, X. Jun, Mining interface specifications for generating
checkable robustness properties, in: 2006 17th IEEE International Symposium
on Software Reliability Engineering. IEEE Computer Society, Los Alamitos, CA,
USA, November 2006, p. 10.

[5] W. Afzal, R. Torkar, R. Feldt, A systematic review of search-based testing for
non-functional system properties, Information and Software Technology 51
(6) (2009) 957–976.

[6] Y. Ait-Ameur, G. Bel, F. Boniol, S. Pairault, V. Wiels, Robustness analysis of
avionics embedded systems, in: 2003 ACM SIGPLAN Conference on
Languages, Compilers, and Tools for Embedded Systems (LCTES’03),
SIGPLAN Not. (USA), vol. 38, ACM, USA, 11–13 June 2003, pp. 123–132.

[7] Z.A. Al-Khanjari, M.R. Woodward, N.S. Kutti, H. Ramadhan, K. Shibab, Masking
errors through software robustness, in: International Conference on Internet
Computing – IC’03, International Conference on Internet Computing – IC’03,
vol. 2, CSREA Press, USA, USA, 23–26 June 2003, pp. 809–817.

[8] A. Albinet, J. Arlat, J.-C. Fabre, Characterization of the impact of faulty drivers
on the robustness of the linux kernel, in: International Conference on
Dependable Systems and Networks, 2004, June 2004, pp. 867–876.

[9] J. Allen, Towards robust agent-based dialogue systems, in: 2005 IEEE
Workshop on Automatic Speech Recognition and Understanding, IEEE,
Piscataway, NJ, USA, 27 November–1 December 2005, p. 4.

[10] V. Ambriola, V. Gervasi, Representing structural requirements in software
architecture, in: Proceedings of IFIP TC2 WG2.4 Working Conference on
Systems Implementation 2000: Languages, Methods and Tools, Chapman &
Hall, London, UK, February 1998, pp. 114–127.

[11] A. Arcuri, L. Briand, A practical guide for using statistical tests to assess
randomized algorithms in software engineering, in: Proceeding of the 33rd
International Conference on Software Engineering, ACM, 2011, pp. 1–10.

[12] V. Arunchandar, A.M. Memon, Aspire: automated systematic protocol
implementation robustness evaluation, in: Proceedings of the 2004
Australian Software Engineering Conference, IEEE Computer Society, Los
Alamitos, CA, USA, 13–16 April 2004, pp. 241–250.

[13] A. Avizienis, J. Laprie, B. Randell, Fundamental Concepts of Dependability,
Tech. Rep. 1145, University of Newcastle, 2001.

[14] S. Bak, D. Chivukula, O. Adekunle, M. Sun, M. Caccamo, L. Sha, The system-
level simplex architecture for improved real-time embedded system safety,
in: 15th IEEE Real-Time and Embedded Technology and Applications
Symposium, 2009. RTAS 2009, April 2009, pp. 99–107.

[15] R. Barbosa, N. Silva, J. Duraes, H. Madeira, Verification and validation of (Real
Time) COTS products using fault injection techniques, in: The 6th
International IEEE Conference on Commercial-off-the-Shelf (COTS)-Based
Software Systems, ICCBSS ’07, 2007, pp. 233–242.

[16] B. Baudry, Y. LeTraon, J.M. Jezequel, Robustness and diagnosability of OO
systems designed by contracts, in: Proceedings of the 7th International
Software Metrics Symposium, METRICS 2001, 4–6 April 2001, IEEE Computer
Society, Los Alamitos, CA, USA, 2001, pp. 272–284.

[17] C. Belcastro, B.-C. Chang, Uncertainty modeling for robustness analysis of
failure detection and accommodation systems, in: Proceedings of the 2002
American Control Conference, vol. 6, 2002, pp. 4776–4782.

[18] F. Belli, A. Hollmann, W.E. Wong, Towards scalable robustness testing, in: 4th
International Conference on Secure Software Integration and Reliability
Improvement (SSIRI), 2010, 2010, pp. 208–216.

14 A. Shahrokni, R. Feldt / Information and Software Technology 55 (2013) 1–17
[19] M. Bennani, D. Menasce, Assessing the robustness of self-managing computer
systems under highly variable workloads, in: Proceedings of the International
Conference on Autonomic, Computing, May 2004, pp. 62–69.

[20] A.T. Berztiss, Safety-critical software: a research agenda, International Journal
of Software Engineering and Knowledge Engineering 4 (1994) 165–181.

[21] J. Biolchini, P. Mian, A. Natali, G. Travassos, Systematic review in software
engineering, System Engineering and Computer Science Department COPPE/
UFRJ, Technical Report ES 679(05) (2005).

[22] B. Boehm, Characteristics of Software Quality, North-Holland, 1978.
[23] B. Boehm, J. Brown, M. Lipow, Quantitative evaluation of software quality, in:

Proceedings of the 2nd International Conference on Software Engineering,
IEEE Computer Society Press, 1976, pp. 592–605.

[24] P. Brito, R. deLemos, C.M.F. Rubira, Verification of exception control flows and
handlers based on architectural scenarios, in: 11th IEEE, High Assurance
Systems Engineering Symposium, 2008, HASE 2008, 2008, pp. 177–186.

[25] P.H.S. Brito, R. deLemos, E. Martins, R. Moraes, C.M.F. Rubira, Architectural-
based validation of fault-tolerant software, in: The 4th Latin–American
Symposium on Dependable Computing, 2009, LADC ’09, 2009, pp. 103–110.

[26] S. Byung-Hoon, J. Hudak, D. Siewiorek, Z. Segall, Development of a benchmark
to measure system robustness: experiences and lessons learned, in:
Proceedings of the 3rd International Symposium on Software Reliability
Engineering (Cat. No.92TH0486-1), 7–10 October 1992, IEEE Computer
Society, Los Alamitos, CA, USA, 1992, pp. 237–245.

[27] G. Calas, A. Boklund, S. Mankefors-Christiernin, A first draft of RATF: a method
combining robustness analysis and technology forecasting, in: 3rd
International Conference on Information Technology: New Generations,
2006. ITNG 2006, 2006, pp. 72–77.

[28] L.C. Calori, T. Stalhane, S. Ziemer, Robustness analysis using FMEA and BBN –
case study for a web-based application, in: WEBIST 2007: Proceedings of the
3rd International Conference on Web Information Systems and Technologies,
Vol IT – Internet Technology, 2007.

[29] H.A. Chan, Accelerated stress testing for both hardware and software, in:
Proceedings of the Annual Reliability and Maintainability Symposium, 26–29
January 2004, Proceedings of the Annual Reliability and Maintainability
Symposium, 2004 (IEEE Cat. No.04CH37506C), IEEE, Piscataway, NJ, USA,
2004, pp. 346–351.

[30] J. Chattopadhyay, Methodology to test the robustness of a fault tolerant
system to meet realtime requirements, Journal of Aerospace Quality and
Reliability 2(Copyright 2009, The Institution of Engineering and Technology)
(2006) 81–88.

[31] M. Cheng-Ying, L. Yan-Sheng, Improving the robustness and reliability of
object-oriented programs through exception analysis and testing, in:
Proceedings of the 10th IEEE International Conference on Engineering of
Complex Computer Systems, 2005, ICECCS 2005, 2005, pp. 432–439.

[32] J. Choi, Kernel aware module verification for robust reconfigurable operating
system, Journal of Information Science and Engineering 23 (5) (2007) 1339–
1347.

[33] J. Chuanming, W. Zhiliang, Y. Xia, W. Jianping, A formal approach to
robustness testing of network protocol, in: Network and Parallel
Computing. IFIP International Conference, NPC 2008, 18–20 October 2008,
Springer-Verlag, Berlin, Germany, 2008, pp. 24–37.

[34] L. Chung, J. doPradoLeite, On non-functional requirements in software
engineering, in: A. Borgida, V. Chaudhri, P. Giorgini, E. Yu (Eds.), Conceptual
Modeling: Foundations and Applications, Lecture Notes in Computer Science,
Vol. 5600, Springer Berlin/ Heidelberg, 2009, pp. 363–379.

[35] D. Costa, H. Madeira, Experimental assessment of COTS DBMS robustness
under transient faults, in: Proceedings of the 1999 Pacific Rim International
Symposium on Dependable Computing, 16–17 December 1999, IEEE
Computer Society, Los Alamitos, CA, USA, 1999, pp. 201–208.

[36] D. Costa, T. Rilho, H. Madeira, Joint evaluation of performance and robustness
of a COTS DBMS through fault-injection, in: Proceedings of the International
Conference on Dependable Systems and Networks (includes FTCS-30 30th
Annual International Symposium on Fault-Tolerant Computing and DCCA-8),
25–28 June 2000, IEEE Computer Society, Los Alamitos, CA, USA, 2000, pp.
251–260.

[37] C. Csallner, Y. Smaragdakis, JCrasher: an automatic robustness tester for Java,
Software-Practice & Experience 34 (11) (2004) 1025–1050.

[38] J.A. de la Puente, Real-time software development: a perspective, in:
Proceedings of the 12th Triennial World Congress of the International
Federation of Automatic Control, 18–23 July 1993, Pergamon, Oxford, UK,
1994, pp. 693–696.

[39] J. De Vale, P. Koopman, Robust software – no more excuses, in: Proceedings of
the International Conference on Dependable Systems and Networks, 23–26
June 2002, IEEE Computer Society, Los Alamitos, CA, USA, 2002, pp. 145–154.

[40] J. Dehnert, Non-controllable choice robustness expressing the controllability
of workflow processes, in: Proceedings of the Application and Theory of Petri
Nets 2002, 23rd International Conference, ICATPN 2002. 24–30 June 2002,
Lecture Notes in Computer Science, vol. 2360, Springer-Verlag, Berlin,
Germany, 2002, pp. 121–141.

[41] B. Demsky, A. Dash, Bristlecone: a language for robust software systems, in:
ECOOP 2008 – Object-Oriented Programming, 22nd European Conference, 7–
11 July 2008, ECOOP 2008 – Object-Oriented Programming, 22nd European
Conference, Springer-Verlag, Berlin, Germany, 2008, pp. 490–515.

[42] B. Demsky, S. Sundaramurthy, Bristlecone: language support for robust
software applications, IEEE Transactions on Software Engineering (99)
2010 1.
[43] J. DeVale, P. Koopman, Performance evaluation of exception handling in i/o
libraries, in: Proceedings of the International Conference on Dependable
Systems and Networks, 1–4 July 2001, IEEE Computer Society, Los Alamitos,
CA, USA, 2001, pp. 519–524.

[44] C.P. Dingman, J. Marshall, D.P. Siewiorek, Measuring robustness of a fault
tolerant aerospace system, in: 25th International Symposium on Fault-
Tolerant Computing, Digest of Papers, 27–30 June 1995, IEEE Computer
Society, Los Alamitos, CA, USA, 1995, pp. 522–527.

[45] H.D. Hofmann, Automated software robustness testing – static and adaptive
test case design methods, in: Proceedings of the 28th Euromicro Conference,
4–6 September 2002, IEEE Computer Society, Los Alamitos, CA, USA, 2002, pp.
62–66.

[46] S. Dolev, O. Gersten, A framework for robust active super tier systems,
International Journal on Software Tools for Technology Transfer 12(Copyright
2011, The Institution of Engineering and Technology) (2010) 53–67.

[47] T. Dybå, T. Dingsoyr, Empirical studies of agile software development: a
systematic review, Information and Software Technology 50 (9–10) (2008)
833–859.

[48] T. Dybå, V. Kampenes, D. Sjöberg, A systematic review of statistical power in
software engineering experiments, Information and Software Technology 48
(8) (2006) 745–755.

[49] E. Engström, P. Runeson, M. Skoglund, A systematic review on regression test
selection techniques, Information and Software Technology 52 (1) (2010) 14–
30.

[50] J. Fernandez, L. Mounier, C. Pachon, A model-based approach for robustness
testing, Testing of Communicating Systems (2005) 333–348.

[51] K. Fernsler, P. Koopman, Robustness testing of a distributed simulation
backplane, in: Proceedings of the 10th International Symposium on Software
Reliability Engineering, 1–4 November 1999, IEEE Computer Society, Los
Alamitos, CA, USA, 1999, pp. 189–198.

[52] C. Fetzer, X. Zhen, An automated approach to increasing the robustness of c
libraries, in: Proceedings of the International Conference on Dependable
Systems and Networks, 23–26 June 2002, IEEE Computer Society, Los
Alamitos, CA, USA, 2002, pp. 155–164.

[53] J.E. Forrester, B.P. Miller, An empirical study of the robustness of windows nt
applications using random testing, in: Proceedings of the 4th USENIX
Windows Systems Symposium, 3–4 August 2000, USENIX Assoc, Berkeley,
CA, USA, 2000, pp. 59–68.

[54] A. Frick, G. Goos, R. Neumann, W. Zimmermann, Construction of robust class
hierarchies, Software – Practice and Experience 30(Copyright 2000, IEE)
(2000) 481–543.

[55] A. Frick, W. Zimmer, W. Zimmermann, On the design of reliable libraries, in:
Proceedings of the 17th International Conference, TOOLS USA ’95. Technology
of Object-Oriented Systems, 1995, Prentice Hall, Englewood Cliffs, NJ, USA,
1995, pp. 13–23.

[56] C. Fu, A. Milanova, B.G. Ryder, D.G. Wonnacott, Robustness testing of java
server applications, IEEE Transactions on Software Engineering 31(Copyright
2005, IEE) (2005) 292–311.

[57] C. Fu, B.G. Ryder, A. Milanova, D. Wonnacott, Testing of java web services for
robustness, in: ACM SIGSOFT International Symposium on Software Testing
and Analysis – ISSTA 2004, 11–14 July 2004, Softw. Eng. Notes (USA), vol. 29,
ACM, USA, 2004, pp. 23–34.

[58] R.P. Gabriel, R. Goldman, Conscientious software, Acm Sigplan Notices 41 (10)
(2006) 433–450.

[59] V. Garousi, A genetic algorithm-based stress test requirements generator tool
and its empirical evaluation, IEEE Transactions on Software Engineering
36(Copyright 2010, The Institution of Engineering and Technology) (2010)
778–97.

[60] A.K. Ghosh, M. Schmid, An approach to testing cots software for robustness to
operating system exceptions and errors, in: Proceedings of the 10th
International Symposium on Software Reliability Engineering, 1999, pp.
166–174.

[61] A.K. Ghosh, M. Schmid, F. Hill, Wrapping windows NT software for
robustness, in: Proceedings of the 29th Annual International Symposium on
Fault-Tolerant Computing, 15–18 June 1999, IEEE Computer Society, Los
Alamitos, CA, USA, 1999, pp. 344–347.

[62] A.K. Ghosh, M. Schmid, V. Shah, Testing the robustness of Windows NT
software, in: Proceedings of the 9th International Symposium on Software
Reliability Engineering, 4–7 November 1998, IEEE Computer Society, Los
Alamitos, CA, USA, 1998, pp. 231–235.

[63] P. Groot, F. VanHarmelen, A.T. Teije, Torture tests: a quantitative analysis for
the robustness of knowledge-based systems, in: Proceedings of the 12th
International Conference on Knowledge Management, 2–6 October 2000,
Lecture Notes in Artificial Intelligence, vol. 1937, Springer-Verlag, Berlin,
Germany, 2000, pp. 403–418.

[64] K. Hameed, R. Williams, J. Smith, Separation of fault tolerance and non-
functional concerns: aspect oriented patterns and evaluation, Journal of
Software Engineering and Applications 3(Copyright 2011, The Institution of
Engineering and Technology) (2010) 303–311.

[65] S. Hanna, M. Munro, An approach for wsdl-based automated robustness
testing of web services, Information Systems, Development (2009) 493–504.

[66] M.P.E. Heimdahl, B.J. Czerny, On the analysis needs when verifying state-
based software requirements: an experience report, Science of Computer
Programming 36 (1) (2000) 65–96.

[67] M.I. Henderson, K.F. Gill, Design of real-time concurrent software,
Mechatronics 6(Copyright 1996, IEE) (1996) 209–225.

A. Shahrokni, R. Feldt / Information and Software Technology 55 (2013) 1–17 15
[68] T.A. Henzinger, Two challenges in embedded systems design: predictability
and robustness, Philosophical Transactions of the Royal Society London,
Series A (Mathematical, Physical and Engineering Sciences) 366(Copyright
2009, The Institution of Engineering and Technology) (2008) 3727–3736.

[69] V.T. Holderfield, M.N. Huhns, A foundational analysis of software robustness
using redundant agent collaboration, in: Agent Technologies, Infrastructures,
Tools, and Applications for E-Services, NODe 2002 Agent-Related Workshops.
Revised Papers, 7–10 October 2002, vol. 2592, Springer-Verlag, Berlin,
Germany, 2003, pp. 355–369.

[70] M.N. Huhns, Interaction-oriented software development, International
Journal of Software Engineering and Knowledge Engineering 11 (3) (2001)
259–279.

[71] M.N. Huhns, V.T. Holderfield, Robust software, IEEE Internet Computing
6(Copyright 2002, IEE) (2002) 80–82.

[72] M.N. Huhns, V.T. Holderfield, R.L.Z. Gutierrez, Achieving software robustness
via large-scale multiagent systems, in: A. Garcia, C. Lucena, F. Zambonelli, A.
Omicini, J. Castro (Eds.), Software Engineering for Large-Scale Multi-Agent
Systems – Research Issues and Practical Applications, Lecture Notes in
Computer Science, vol. 2603, 2003, pp. 199–215.

[73] D. Hui, S. Lui, Dependency algebra: a tool for designing robust real-time
systems, in: Proceedings of RTSS, 26th IEEE International Real-Time Systems
Symposium, 5–8 December 2005, IEEE Computer Society, Los Alamitos, CA,
USA, 2006, p. 11.

[74] V. Issarny, An exception-handling mechanism for parallel object-oriented
programming: toward reusable, robust distributed software, Journal of
Object-Oriented Programming 6(Copyright 1993, IEE) (1993) 29–40.

[75] V. Issarny, J.P. Benatre, Architecture-based exception handling, in:
Proceedings of the 34th Annual Hawaii International Conference on System
Sciences, 2001, p. 10.

[76] M. Jaffe, N. Leveson, Completeness, robustness, and safety in real-time
software requirements specification, in: Proceedings of 11th International
Conference on, Software Engineering, May 1989, pp. 302–311.

[77] M.S. Jaffe, N.G. Leveson, M.P.E. Heimdahl, B.E. Melhart, Software requirements
analysis for real-time process-control systems, IEEE Transactions on Software
Engineering 17(Copyright 1991, IEE) (1991) 241–258.

[78] A. Jhumka, M. Hiller, N. Suri, An approach to specify and test component-
based dependable software, in: Proceedings of the 7th IEEE International
Symposium on High Assurance Systems Engineering, 2002, pp. 211–220.

[79] S. Jiang, D. Yan, Approach to testing java exception handling mechanism
quickly, Mini–Micro Systems 26(Copyright 2006, IEE) (2005) 1854–1857.

[80] P. Jiantao, P. Koopman, H. Yennun, R. Gruber, J. MimiLing, Robustness testing
and hardening of CORBA ORB implementations, in: Proceedings of the
International Conference on Dependable Systems and Networks, 1–4 July
2001, IEEE Computer Society, Los Alamitos, CA, USA, 2001, pp. 141–150.

[81] A. Johansson, N. Suri, B. Murphy, On the impact of injection triggers for os
robustness evaluation, in: The 18th IEEE International Symposium on
Software Reliability, 2007, ISSRE ’07, 2007, pp. 127–126.

[82] M. Jorgensen, M. Shepperd, A systematic review of software development
cost estimation studies, IEEE Transactions on Software Engineering 33 (1)
(2007) 33–53.

[83] J.S. Jwo, H.M. Cheng, A robust framework for building java applications, in:
Computer Science and Technology in New Century, International Academic
Publishers LTD, 2001, pp. 506–510.

[84] R. Kaksonen, M. Laakso, A. Takanen, Software security assessment through
specification mutations and fault injection, In: R. Steinmetz, J. Dittman, M.
Steinebach (Eds.), Communications and Multimedia Security Issues of the
New Century, International Federation for Information Processing, vol. 64,
Kluwer Academic Publishers, 2001, pp. 174–183.

[85] K. Kanoun, Y. Crouzet, A. Kalakech, A.E. Rugina, P. Rumeau, Benchmarking the
dependability of windows and linux using postmark/spl trade/ workloads, in:
16th IEEE International Symposium on Software Reliability Engineering,
2005. ISSRE 2005, 2005, pp. 10–20.

[86] J. Kashmirian, L. Padgham, Relative robustness: an empirical investigation of
behaviour based and plan based paradigms as environmental conditions
change, in: Foundations of Intelligent Systems, 12th International
Symposium, ISMIS 200, 11–14 October 2000, Lecture Notes in Artificial
Intelligence, vol. 1932, Springer Verlag, Berlin, Germany, 2000, pp. 205–215.

[87] J. Kaene, T. Ellman, Knowledge-based re-engineering of legacy programs for
robustness in automated design, in: Proceedings of the 11th Knowledge
Based Software Engineering Conference, 25–28 September 1996, IEEE
Computer Society, Los Alamitos, CA, USA, 1996, pp. 104–113.

[88] N. Khedri, M. Rahgozar, M. Hashemi, A study on using n-pattern chains of
design patterns based on software quality metrics, in: C. Ardil (Ed.),
Proceedings of World Academy of Science, Engineering and Technology,
World Acad. Sci., Eng. & Tech-Waset, vol.14, 2006, pp. 354–359.

[89] B. Kitchenham, Procedures for Performing Systematic Reviews, Keele
University, Keele UK, 2004. p. 33.

[90] B. Kitchenham, S. Charters, Guidelines for Performing Systematic Literature
Reviews in Software Engineering, Keele University. Tech. Rep. UK EBSE-2007-
1, Software Engineering Group, School of Computer Science and Mathematics,
Keele University, and Department of Computer Science, University of
Durham, 2007.

[91] B. Kitchenham, T. Dyba, M. Jorgensen, Evidence-based software engineering,
in: Proceedings of the 26th International Conference on Software
Engineering, IEEE Computer Society, 2004, pp. 273–281.
[92] B. Kitchenham, O. PearlBrereton, D. Budgen, M. Turner, J. Bailey, S. Linkman,
Systematic literature reviews in software engineering – a systematic
literature review, Information and Software Technology 51 (1) (2009) 7–15.

[93] P. Koopman, Toward a scalable method for quantifying aspects of fault
tolerance, software assurance, and computer security, in: Proceedings of the
Computer Security, Dependability, and Assurance: From Needs to Solutions,
7–9 July 1998 & 11–13 November 1998, IEEE Computer Society, Los Alamitos,
CA, USA, 1999, pp. 103–131.

[94] P. Koopman, J. DeVale, The exception handling effectiveness of posix
operating systems, IEEE Transactions on Software Engineering 26 (9) (2000)
837–848.

[95] P. Koopman, J. Sung, C. Dingman, D. Siewiorek, T. Marz, Comparing operating
systems using robustness benchmarks, in: Proceedings of the 16th
Symposium on Reliable Distributed Systems, 1997, pp. 72–79.

[96] A. Kovi, Z. Micskei, Robustness testing of standard specifications-based ha
middleware, in: Proceedings of 2010 30th International Conference on
Distributed Computing Systems Workshops (ICDCS 2010 Workshops), 21–
25 June 2010, IEEE Computer Society, Los Alamitos, CA, USA, 2010, pp. 302–
306.

[97] N.P. Krop, P.J. Koopman, D.P. Siewiorek, Automated robustness testing of off-
the-shelf software components, in: Proceedings of the 28th International
Symposium on Fault Tolerant Computing, 23–25 June 1998, IEEE Computer
Society, Los Alamitos, CA, USA, 1998, pp. 230–239.

[98] D. Kulkarni, A. Tripathi, A framework for programming robust context-aware
applications, IEEE Transactions on Software Engineering 36(Copyright 2010,
The Institution of Engineering and Technology) (2010) 184–197.

[99] J. Avizienis, A. Avizienis, H. Kopetz, Dependability: Basic Concepts and
Terminology, Springer-Verlag, New York, Inc. Secaucus, NJ, USA, 1992.

[100] N. Laranjeiro, S. Canelas, M. Vieira, Wsrbench: an on-line tool for robustness
benchmarking, in: 2008 IEEE International Conference on Services
Computing (SCC), 7–11 July 2008, vol. 2, IEEE, Piscataway, NJ, USA, 2008,
pp. 187–194.

[101] N. Laranjeiro, R. Oliveira, M. Vieira, Applying text classification algorithms in
web services robustness testing, in: Proceedings of 2010 29th IEEE
International Symposium on Reliable Distributed Systems (SRDS), 31
October–3 November 2010, IEEE Computer Society, Los Alamitos, CA, USA,
2010, pp. 255–64.

[102] N. Laranjeiro, M. Vieira, Extending test-driven development for robust web
services, in: 2nd International Conference on Dependability, 2009. DEPEND
’09, 2009, pp. 122–127.

[103] B. Lei, X. Li, Z. Liu, C. Morisset, V. Stolz, Robustness testing for software
components, Science of Computer Programming 75(Copyright 2011, The
Institution of Engineering and Technology) (2010) 879–897.

[104] B. Lei, Z. Liu, C. Morisset, L. Xuandong, State based robustness testing for
components, Electronic Notes in Theoretical Computer Science
260(Copyright 2010, The Institution of Engineering and Technology) (2010)
173–188.

[105] P. Liggesmerer, M. Rothfelder, System safety improvement by automated
software robustness evaluation, in: Proceedings of TCS98: 15th International
Conference and Exposition on Testing Computer Software, 8–12 June 1998,
ACM, New York, NY, USA, 1998, pp. 71–77.

[106] L. Lisboa, V. Garcia, D. Lucrédio, E. deAlmeida, S. deLemosMeira, R.
deMattosFortes, A systematic review of domain analysis tools, Information
and Software Technology 52 (1) (2010) 1–13.

[107] H. Liu, J. Jiang, A robustness testing platform for file system, High Technology
Letters (English Language Edition) 12(Copyright 2006, The Institution of
Engineering and Technology) (2006) 23–27.

[108] C. Lu, J.C. Fabre, M.O. Killijian, Robustness of modular multi-layered software
in the automotive domain: a wrapping-based approach, in: 2009 IEEE 14th
International Conference on Emerging Technologies & Factory Automation.
ETFA 2009, 22–25 September 2009, IEEE, Piscataway, NJ, USA, 2009, p. 8.

[109] X. Luo, W. Ji, L. Chao, TTCN-3 based robustness test generation and
automation, in: Proceedings of the 2009 International Conference on
Information Technology and Computer Science (ITCS 2009), 25–26 July
2009, vol. 2, IEEE, Piscataway, NJ, USA, 2009, pp. 120–125.

[110] M.N. Huhns, Agent teams: building and implementing software, IEEE Internet
Computing 4(Copyright 2000, IEE) (2000) 93–95.

[111] R. Majumdar, I. Saha, Symbolic robustness analysis, in: Proceedings of the
2009 30th IEEE Real-Time Systems Symposium (RTSS 2009), 1–4 December
2009, IEEE, Piscataway, NJ, USA, 2009, pp. 355–363.

[112] E. Martin, S. Basu, X. Tao, WebSob: a tool for robustness testing of Web
services, in: 29th International Conference on Software Engineering (ICSE’07
Companion), 20–26 May 2007, IEEE, Piscataway, NJ, USA, 2007,
pp. 67–68.

[113] R.A. Maxion, A.L. deChambeau, Dependability at the user interface, in: The
25th International Symposium on Fault-Tolerant Computing, 1995, FTCS-25,
Digest of Papers, 1995, pp. 528–535.

[114] R.A. Maxion, R.T. Olszewski, Improving software robustness with
dependability cases, in: Proceedings of the 28th International Symposium
on Fault Tolerant Computing, 23–25 June 1998. IEEE Computer Society, Los
Alamitos, CA, USA, 1998, pp. 346–355.

[115] D. Mays, R.J.J. Leblanc, The CycleFree methodology: a simple approach to
building reliable, robust, real-time systems, In: Proceedings of the 24th
International Conference on Software Engineering. ICSE 2002, 19–25 May
2002, ACM, New York, NY, USA, 2002, pp. 567–575.

16 A. Shahrokni, R. Feldt / Information and Software Technology 55 (2013) 1–17
[116] N. Mendes, J. Duraes, H. Madeira, Evaluating and comparing the impact of
software faults on web servers, in: European Dependable Computing
Conference (EDCC), 2010 pp. 33–42.

[117] Z. Micskei, I. Majzik, F. Tam, Comparing robustness of AIS-based middleware
implementations, in: Service Availability, Proceedings of the 4th
International Service Availability, 21–22 May 2007, Lecture Notes in
Computer Science, vol. 4526, Springer, Berlin, Germany, 2007, pp. 20–30.

[118] B. Miller, D. Koski, C. Lee, V. Maganty, R. Murthy, A. Natarajan, J. Steidl, Fuzz
revisited: A re-examination of the reliability of UNIX utilities and services,
Tech. rep., 1995.

[119] B.P. Miller, L. Fredriksen, B. So, An empirical study of the reliability of unix
utilities, Communications of ACM 33 (12) (1990) 32–44.

[120] R. Moraes, R. Barbosa, J. Duraes, N. Mendes, E. Martins, H. Madeira, Injection
of faults at component interfaces and inside the component code: are they
equivalent? in: Proceedings of the 6th European Dependable Computing
Conference, 18–20 October 2006, IEEE Computer Society, Los Alamitos, CA,
USA, 2006, p. 10.

[121] J. Moses, K. Jackson, Ensuring robustness and reliability of object oriented
software using mascot 3, in: Proceedings of the 2nd International Conference
Reliability and Robustness of Engineering Software II, 22–24 April 1991,
Comput. Mech. Publications, Southampton, UK, 1991, pp. 19–34.

[122] A. Mukherjee, D.P. Siewiorek, Measuring software dependability by
robustness benchmarking, IEEE Transactions on Software Engineering 23
(6) (1997) 366–378.

[123] C. Nebut, F. Fleurey, Y. LeTraon, J.M. Jezequel, Requirements by contracts
allow automated system testing, in: 14th International Symposium on
Software Reliability Engineering, 17–20 November 2003, IEEE Computer
Society, Los Alamitos, CA, USA, 2003, pp. 85–96.

[124] M.H. Neishaburi, M. Daneshtalab, M.R. Kakoee, S. Safari, Improving
robustness of real-time operating systems (RTOSs) services related to soft-
errors, in: IEEE/ACS International Conference on Computer Systems and
Applications, 2007, AICCSA ’07, 2007, pp. 528–534.

[125] M.H. Neishaburi, M.R. Kakoee, M. Daneshtalab, S. Safari, Z. Navabi, A hw/sw
architecture to reduce the effects of soft-errors in real-time operating system
services, in: Proceedings of the 2007 IEEE Workshop on Design and
Diagnostics of Electronic Circuits and Systems, 11–13 April 2007, IEEE,
Piscataway, NJ, USA, 2007, pp. 247–250.

[126] J. Olah, I. Majzik, A model based framework for specifying and executing fault
injection experiments, in: The 4th International Conference on Dependability
of Computer Systems, 2009. DepCos-RELCOMEX ’09, 2009, pp. 107–114.

[127] P. Koopman, J. DeVale, Comparing the robustness of posix operating systems,
in: The 29th Annual International Symposium on Fault-Tolerant Computing,
1999. Digest of Papers, 1999, pp. 30–37.

[128] J. Pan, P. Koopman, D. Siewiorek, A dimensionality model approach to testing
and improving software robustness, in: Proceedings of the 1999 IEEE
AUTOTESTCON, 30 August–2 September 1999, IEEE, Piscataway, NJ, USA,
1999, pp. 493–501.

[129] J. Pardo, J.C. Campelo, J.J. Serrano, Non-intrusive tool for verifying COTS
components in embedded systems, in: 2009 International Conference on
Embedded Systems & Applications. ESA 2009, 13–16 July 2009, CSREA Press,
Las Vegas, NV, USA, 2009, pp. 274–279.

[130] K. Petersen, R. Feldt, S. Mujtaba, M. Mattsson, Systematic mapping studies in
software engineering, in: 12th International Conference on Evaluation and
Assessment in Software Engineering, 2008, pp. 71–80.

[131] M. Popovic, J. Kovacevic, A statistical approach to model-based robustness
testing, in: 14th Annual IEEE International Conference and Workshops on the
Engineering of Computer-Based Systems, 2007, ECBS ’07, 2007, pp. 485–494.

[132] P. Preston-Thomas, R. Paterson, A technique for improving software
robustness to failure, in: ICC 91, International Conference on
Communications Conference Record (Cat. No.91CH2984-3), 23–26 June
1991, IEEE, New York, NY, USA, 1991, pp. 1159–1163.

[133] K.N. Rajanikanth, Y. Narahari, N.N.S.S.R.K. Prasad, R.S. Rao, A robust and
scalable architecture for airborne radar simulation, in: IEEE TENCON 2003,
Conference on Convergent Technologies for the Asia–Pacific Region, 15–17
October 2003, vol. 1, Allied Publishers Pvt. Ltd., New Delhi, India, 2003, pp.
173–177.

[134] T. Rajesh, M.N. Huhns, Multiagent reputation management to achieve robust
software using redundancy, in: IEEE/WIC/ACM International Conference on
Intelligent Agent Technology, 2005. pp. 386–392.

[135] P. Robertson, B. Williams, Automatic recovery from software failure,
Communications of the ACM 49(Copyright 2006, The Institution of
Engineering and Technology) (2006) 41–47.

[136] M.P. Robillard, G.C. Murphy, Analysing exception flow in javatm programs,
in: ESEC/FSE’99, 7th European Software Engineering Conference Held Jointly
with 7th ACM SIGSOFT Symposium on the Foundations of Software
Engineering, 6–10 September 1999, Softw. Eng. Notes (USA), vol. 24, ACM,
USA, 1999, pp. 322–327.

[137] A. Rollet, F. Saad-Khorchef, A formal approach to test the robustness of
embedded systems using behaviour, in: 2007 5th International Conference
on Software Engineering Research, Management and Applications, 20–22
August 2007, IEEE, Piscataway, NJ, USA, 2007, pp. 667–674.

[138] J.C. Ruiz, J. Pardo, J.C. Campelo, P. Gil, On-chip debugging-based fault
emulation for robustness evaluation of embedded software components,
in: Proceedings of the 11th Pacific Rim International Symposium on
Dependable, Computing, 2005, p. 8.
[139] S. Hanna, M. Munro, Fault-based web services testing. in: The 5th
International Conference on Information Technology: New Generations,
2008, ITNG 2008, 2008, pp. 471–476.

[140] F. Saad-Khorchef, A. Rollet, R. Castanet, A framework and a tool for robustness
testing of communicating software, in: Applied Computing 2007, The 22nd
Annual ACM Symposium on Applied Computing, 11–15 March 2007, vol. 2,
ACM, New York, NY, USA, 2007, pp. 1461–1466.

[141] F.G. Santana, J.M. Gonzalez, J.M.S. Espino, J.C.R. Calero, Building robust
applications by reusing non-robust legacy software, in: Reliable Software
Technologies – Ada-Europe 2001, 6th Ada-Europe International Conference
on Reliable Software Technologies, 14–18 May 2001, Lecture Notes in
Computer Science, vol. 2043, Springer-Verlag, Berlin, Germany, 2001, pp.
148–159.

[142] C. Sarbu, A. Johansson, F. Fraikin, N. Suri, Improving robustness testing of
COTS OS extensions, in: D. Penkler, M. Reitenspiess, F. Tam (Eds.), Service
Availability, Lecture Notes in Computer Science, vol. 4328, Springer-Verlag,
Berlin, 2006, pp. 120–139.

[143] M. Schmid, A. Ghosh, F. Hill, Techniques for evaluating the robustness of
windows nt software, in: Proceedings of DARPA Information Survivability
Conference and Exposition, 2000. DISCEX ’00, vol.2, 2000, pp. 347–360.

[144] D.C. Schmidt, Wrapper facade: a structural pattern for encapsulated
functions within classes, C++ Report 11(Copyright 1999, IEE) (1999) 40–41.

[145] K. SeungHak, K. HyeonSoo, Robustness testing framework for web services
composition, in: 2009 IEEE Asia–Pacific Services Computing Conference
(APSCC 2009), 7–11 December 2009, IEEE, Piscataway, NJ, USA, 2009, pp.
319–324.

[146] A. Shahrokni, R. Feldt, Towards a framework for specifying software
robustness requirements based on patterns, Requirements Engineering:
Foundation for Software Quality (2010) 79–84.

[147] A. Shahrokni, R. Feldt, F. Petterson, A. Bäck, Robustness verification challenges
in automotive telematics software, in: SEKE, 2009, pp. 460–465.

[148] C.P. Shelton, P. Koopman, K. Devale, Robustness testing of the Microsoft
Win32 API, in: Proceedings of the International Conference on Dependable
Systems and Networks, 25–28 June 2000, IEEE Computer Society, Los
Alamitos, CA, USA, 2000, pp. 261–270.

[149] M.E. Shin, Self-healing components in robust software architecture for
concurrent and distributed systems, Science of Computer Programming 57
(1) (2005) 27–44.

[150] X. Shu, L. Sheng, W. Xiangrong, D. Lijun, Fault-oriented software robustness
assessment for multicast protocols, in: Proceedings of the 2nd IEEE
International Symposium on Network Computing and Applications, NCA
2003, 16–18 April 2003, Proceedings of the 2nd IEEE International
Symposium on Network Computing and Applications, NCA 2003, IEEE
Computer Society, Los Alamitos, CA, USA, 2003, pp. 223–230.

[151] R.K. Shyamasundar, Design of software for safety critical systems, Sadhana
19(Copyright 1995, IEE) (1994) 941–969.

[152] D.P. Siewiorek, J.J. Hudak, B.H. Suh, Z. Segal, Development of a benchmark to
measure system robustness, in: FTCS-23 The 23rd International Symposium
on Fault-Tolerant Computing, 22–24 June 1993, IEEE Computer Society, Los
Alamitos, CA, USA, 1993, pp. 88–97.

[153] J. Sloan, D. Kesler, R. Kumar, A. Rahimi, A numerical optimization-based
methodology for application robustification: transforming applications for
error tolerance, in: 2010 IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 28 June–1 July 2010, IEEE, Piscataway, NJ, USA,
2010, pp. 161–70.

[154] M. Susskraut, C. Fetzer, Robustness and security hardening of COTS software
libraries, in: 37th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN’07), 25–28 June 2007, IEEE, Piscataway, NJ, USA,
2007, pp. 61–71.

[155] M. Svahnberg, T. Gorschek, R. Feldt, R. Torkar, S.B. Saleem, M.U. Shafique, A
systematic review on strategic release planning models, Information and
Software Technology 52 (3) (2010) 237–248.

[156] X. Tao, M. Acharya, S. Thummalapenta, K. Taneja, Improving software
reliability and productivity via mining program source code, in: IEEE
International Symposium on Parallel and Distributed Processing, 2008.
IPDPS 2008, 2008, pp. 1–5.

[157] A. Tarhini, A. Rollet, H. Fouchal, A pragmatic approach for testing robustness
on real-time component based systems, in: Book of Abstracts, ACS/IEEE
International Conference on Computer Systems and Applications, 3–6
January 2005, IEEE, Piscataway, NJ, USA, pp. 143–150.

[158] L. Tsanchi, C. Chi-Ming, B. Horgan, M.Y. Lai, S.Y. Wang, A software fault
insertion testing methodology for improving the robustness of
telecommunications systems, in: IEEE International Conference on
Communications, 1994. ICC ’94, SUPERCOMM/ICC ’94, Conference Record,
’Serving Humanity Through Communications’, 1994, pp. 1767–1771.

[159] B. Twala, M. Cartwright, M. Shepperd, Comparison of various methods for
handling incomplete data in software engineering databases, in: 2005
International Symposium on Empirical Software Engineering, 17–18
November 2005, IEEE, Piscataway, NJ, USA, 2005, p. 10.

[160] V. Issarny, Exception handling mechanism for parallel object-oriented
programming. towards the design of reusable and robust distributed
software, Tech. rep., Inst. Nat. Recherche Inf. Autom., Le Chesnay, France,
1992.

[161] L. Verde, F. Amato, P. Canzolino, A software tool for robustness analysis in
plant parameters space (roban), in: IEEE International Symposium on

A. Shahrokni, R. Feldt / Information and Software Technology 55 (2013) 1–17 17
Computer-Aided Control System Design, 2000, CACSD 2000, 2000,
pp. 196–201.

[162] M. Vieira, N. Laranjeiro, H. Madeira, Assessing robustness of web-services
infrastructures, in: 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, 2007, DSN ’07, 2007,
pp. 131–136.

[163] M. Vieira, N. Laranjeiro, H. Madeira, Benchmarking the robustness of web
services, in: 13th Pacific Rim International Symposium on Dependable
Computing, 2007. PRDC 2007, 2007, pp. 322–329.

[164] E. Voas, F. Charron, G. McGraw, K. Miller, M. Friedman, Predicting how badly
good software can behave, IEEE Software 14(Copyright 1997, IEE) (1997) 73–
83.

[165] J. Voas, K. Miller, Interface robustness for COTS-based systems, in: IEE
Colloquium on COTS and Safety Critical Systems (Digest No.1997/103), 28
January 1997, IEE, London, UK, 1996, p. 7.
[166] S. Waydo, W.B. Dunbar, E. Klavins, Toward feedback stabilization of faulty
software systems: a case study, in: 42nd IEEE International Conference on
Decision and Control, 9–12 December 2003, vol. 1, IEEE, Piscataway, NJ, USA,
2003, pp. 738–743.

[167] C. WeiHoo, RPB in software testing, in: International Multi-Conference on
Computing in the Global Information Technology, 2007. ICCGI 2007, 2007, p.
8.

[168] C.H. Yeh, B. Parhami, E.A. Varavrigos, T.A. Varvarigou, RACE: a software-based
fault tolerance scheme for systematically transforming ordinary algorithms
to robust algorithms, in: Proceedings of the 15th International Parallel and
Distributed Processing, Symposium, 2001, p. 6.

[169] K.Z. Zamli, M.D.A. Hassan, N.A.M. Isa, S.N. Azizan, An automated software
fault injection tool for robustness assessment of java cots, in: 2006
International Conference on Computing & Informatics. ICOCI 2006, 6–8
June 2006, IEEE, Piscataway, NJ, USA, 2006, p. 6.

	A systematic review of software robustness
	1 Introduction
	2 Related work
	3 Research methodology
	3.1 Research questions
	3.2 Sources of information
	3.3 Search criteria
	3.4 Study selection
	3.5 Data extraction and synthesis
	3.5.1 Selection and extraction validity
	3.5.1.1 Validity control I
	3.5.1.2 Validity control II

	3.6 Threats to validity

	4 Results and analysis
	4.1 Phase focus of studies
	4.1.1 Requirements
	4.1.2 Analysis
	4.1.3 Design & architecture
	4.1.3.1 Wrapper

	4.1.4 Verification and validation
	4.1.4.1 Robustness benchmarks
	4.1.4.2 Fault injection
	4.1.4.3 Automated robustness testing

	4.1.5 Other work

	4.2 System focus
	4.3 Quality of research/contribution
	4.3.1 Research type
	4.3.2 Contribution facet
	4.3.3 Evaluation

	5 Discussion
	6 Conclusion
	References

